Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Am J Physiol Renal Physiol ; 326(2): F257-F264, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38031731

ABSTRACT

Renal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, n = 3), relatively healthy donor kidneys (n = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, n = 3). Renal fibrosis and certain macrophage populations were also evaluated in renal sections. Cytobank analysis showed in RAS kidneys decreased cell populations expressing epithelial markers (CD45-/CD13+) and increased CD45+ inflammatory cells, whereas scattered tubular-progenitor-like cells (CD45-/CD133+/CD24+) increased compared with kidney donors. Macrophages switched to proinflammatory phenotypes in RAS, and the numbers of IL-10-producing dendritic cells (DC) were also lower. Compared with kidney donors, RAS kidneys had decreased overall DC populations but increased plasmacytoid DC. Furthermore, senescent active T cells (CD45+/CD28+/CD57+), aged neutrophils (CD45+/CD15+/CD24+/CD11c+), and regulatory B cells (CD45+/CD14-/CD24+/CD44+) were increased in RAS. RCC kidneys showed a distribution of cell phenotypes comparable with RAS but less pronounced, accompanied by an increase in CD34+, CD370+, CD103+, and CD11c+/CD103+ cells. Histologically, RAS kidneys showed significantly increased fibrosis and decreased CD163+/CD141+ cells. The single-cell platform CyTOF enables the detection of significant changes in renal cells, especially in subsets of immune cells in ischemic human kidneys. Endogenous pro-repair cell types in RAS warrant future study for potential immune therapy.NEW & NOTEWORTHY The single-cell platform mass cytometry (CyTOF) enables detection of significant changes in one million of renal cells, especially in subsets of immune cells in ischemic human kidneys distal to renal artery stenosis (RAS). We found that pro-repair cell types such as scattered tubular-progenitor-like cells, aged neutrophils, and regulatory B cells show a compensatory increase in RAS. Immune cell phenotype changes may reflect ongoing inflammation and impaired immune defense capability in the kidneys.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Renal Artery Obstruction , Humans , Aged , Carcinoma, Renal Cell/pathology , Renal Artery Obstruction/pathology , Renal Artery , Kidney/pathology , Ischemia/pathology , Phenotype , Inflammation/pathology , Kidney Neoplasms/pathology
2.
Nephrol Dial Transplant ; 37(10): 1844-1856, 2022 09 22.
Article in English | MEDLINE | ID: mdl-35451482

ABSTRACT

BACKGROUND: Renal artery stenosis (RAS) is an important cause of chronic kidney disease and secondary hypertension. In animal models, renal ischemia leads to downregulation of growth factor expression and loss of intrarenal microcirculation. However, little is known about the sequelae of large-vessel occlusive disease on the microcirculation within human kidneys. METHOD: This study included five patients who underwent nephrectomy due to renovascular occlusion and seven nonstenotic discarded donor kidneys (four deceased donors). Micro-computed tomography was performed to assess microvascular spatial densities and tortuosity, an index of microvascular immaturity. Renal protein expression, gene expression and histology were studied in vitro using immunoblotting, polymerase chain reaction and staining. RESULTS: RAS demonstrated a loss of medium-sized vessels (0.2-0.3 mm) compared with donor kidneys (P = 0.037) and increased microvascular tortuosity. RAS kidneys had greater protein expression of angiopoietin-1, hypoxia-inducible factor-1α and thrombospondin-1 but lower protein expression of vascular endothelial growth factor (VEGF) than donor kidneys. Renal fibrosis, loss of peritubular capillaries (PTCs) and pericyte detachment were greater in RAS, yet they had more newly formed PTCs than donor kidneys. Therefore, our study quantified significant microvascular remodeling in the poststenotic human kidney. RAS induced renal microvascular loss, vascular remodeling and fibrosis. Despite downregulated VEGF, stenotic kidneys upregulated compensatory angiogenic pathways related to angiopoietin-1. CONCLUSIONS: These observations underscore the nature of human RAS as a microvascular disease distal to main vessel stenosis and support therapeutic strategies directly targeting the poststenotic kidney microcirculation in patients with RAS.


Subject(s)
Renal Artery Obstruction , Angiopoietin-1/metabolism , Angiopoietin-1/therapeutic use , Animals , Fibrosis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/pathology , Renal Artery Obstruction/complications , Renal Circulation/physiology , Thrombospondins/metabolism , Vascular Endothelial Growth Factor A/metabolism , X-Ray Microtomography
3.
J Am Soc Nephrol ; 32(8): 1987-2004, 2021 08.
Article in English | MEDLINE | ID: mdl-34135081

ABSTRACT

BACKGROUND: Peripheral vascular diseases may induce chronic ischemia and cellular injury distal to the arterial obstruction. Cellular senescence involves proliferation arrest in response to stress, which can damage neighboring cells. Renal artery stenosis (RAS) induces stenotic-kidney dysfunction and injury, but whether these arise from cellular senescenceand their temporal pattern remain unknown. METHODS: Chronic renal ischemia was induced in transgenic INK-ATTAC and wild type C57BL/6 mice by unilateral RAS, and kidney function (in vivo micro-MRI) and tissue damage were assessed. Mouse healthy and stenotic kidneys were analyzed using unbiased single-cell RNA-sequencing. To demonstrate translational relevance, cellular senescence was studied in human stenotic kidneys. RESULTS: Using intraperitoneal AP20187 injections starting 1, 2, or 4 weeks after RAS, selective clearance of cells highly expressing p16Ink4a attenuated cellular senescence and improved stenotic-kidney function; however, starting treatment immediately after RAS induction was unsuccessful. Broader clearance of senescent cells, using the oral senolytic combination dasatinib and quercetin, in C57BL/6 RAS mice was more effective in clearing cells positive for p21 (Cdkn1a) and alleviating renal dysfunction and damage. Unbiased, single-cell RNA sequencing in freshly dissociated cells from healthy and stenotic mouse kidneys identified stenotic-kidney epithelial cells undergoing both mesenchymal transition and senescence. As in mice, injured human stenotic kidneys exhibited cellular senescence, suggesting this process is conserved. CONCLUSIONS: Maladaptive tubular cell senescence, involving upregulated p16 (Cdkn2a), p19 (Cdkn2d), and p21 (Cdkn1a) expression, is associated with renal dysfunction and injury in chronic ischemia. These findings support development of senolytic strategies to delay chronic ischemic renal injury.


Subject(s)
Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Ischemia/physiopathology , Kidney/physiopathology , Renal Insufficiency, Chronic/physiopathology , p21-Activated Kinases/metabolism , Animals , Apoptosis/drug effects , Caspase 8/metabolism , Cellular Senescence/drug effects , Cellular Senescence/genetics , Chronic Disease , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p19/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Dasatinib/pharmacology , Disease Models, Animal , Enzyme Activation/drug effects , Epithelial Cells/physiology , Epithelial-Mesenchymal Transition , Gene Expression , Heparin-binding EGF-like Growth Factor/genetics , Humans , Ischemia/etiology , Kidney/blood supply , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteopontin/genetics , Protein Kinase Inhibitors/pharmacology , Renal Artery Obstruction/complications , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Sequence Analysis, RNA , Single-Cell Analysis , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology , Up-Regulation , p21-Activated Kinases/genetics
4.
J Cell Physiol ; 236(2): 1332-1344, 2021 02.
Article in English | MEDLINE | ID: mdl-32657444

ABSTRACT

Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue-derived MSCs 2 weeks earlier, or sham. STK senescence-associated ß-galactosidase (SA-ß-Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence-associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue-derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA-ß-Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA-ß-Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.


Subject(s)
Cellular Senescence/genetics , Mesenchymal Stem Cell Transplantation , Renal Artery Obstruction/therapy , beta-Galactosidase/genetics , Adipose Tissue/cytology , Animals , Disease Models, Animal , Exosomes/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/therapy , Kidney/metabolism , Kidney/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Renal Artery Obstruction/genetics , Renal Artery Obstruction/pathology
5.
Kidney Int ; 92(1): 114-124, 2017 07.
Article in English | MEDLINE | ID: mdl-28242034

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis.


Subject(s)
Extracellular Vesicles/transplantation , Kidney , Mesenchymal Stem Cell Transplantation/methods , Metabolic Syndrome/surgery , Nephritis/prevention & control , Renal Artery Obstruction/surgery , Animals , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Fibrosis , Glomerular Filtration Rate , Interleukin-10/genetics , Interleukin-10/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Nephritis/etiology , Nephritis/genetics , Nephritis/metabolism , Oxygen/blood , RNA Interference , Renal Artery Obstruction/complications , Renal Artery Obstruction/genetics , Renal Artery Obstruction/metabolism , Renal Circulation , Sus scrofa , Time Factors , Transplantation, Autologous
6.
Circ Res ; 115(3): 364-75, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24906644

ABSTRACT

RATIONALE: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. OBJECTIVE: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. METHODS AND RESULTS: Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. CONCLUSIONS: The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.


Subject(s)
Adventitia/cytology , Atherosclerosis/pathology , Cell Line/immunology , Macrophages/cytology , Stem Cells/cytology , Adoptive Transfer , Adventitia/immunology , Animals , Antigens, Ly/metabolism , Aorta/cytology , Aorta/immunology , Apolipoproteins E/genetics , Atherosclerosis/immunology , Female , Hyperlipidemias/immunology , Hyperlipidemias/pathology , Immunophenotyping , Leukocyte Common Antigens/metabolism , Macrophages/metabolism , Macrophages/transplantation , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/genetics , Spleen/cytology , Stem Cells/immunology
7.
Clin Cancer Res ; 29(20): 4242-4255, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37505479

ABSTRACT

PURPOSE: We previously showed that elevated frequencies of peripheral blood CD3+CD4+CD127-GARP-CD38+CD39+ T cells were associated with checkpoint immunotherapy resistance in patients with metastatic melanoma. In the present study, we sought to further investigate this population of ectoenzyme-expressing T cells (Teee). EXPERIMENTAL DESIGN: Teee derived from the peripheral blood of patients with metastatic melanoma were evaluated by bulk RNA-sequencing (RNA-seq) and flow cytometry. The presence of Teee in the tumor microenvironment was assessed using publically available single-cell RNA-seq datasets of melanoma, lung, and bladder cancers along with multispectral immunofluorescent imaging of melanoma patient formalin-fixed, paraffin-embedded specimens. Suppressive function of Teee was determined by an in vitro autologous suppression assay. RESULTS: Teee had phenotypes associated with proliferation, apoptosis, exhaustion, and high expression of inhibitory molecules. Cells with a Teee gene signature were present in tumors of patients with melanoma, lung, and bladder cancers. CD4+ T cells co-expressing CD38 and CD39 in the tumor microenvironment were preferentially associated with Ki67- CD8+ T cells. Co-culture of patient Teee with autologous T cells resulted in decreased proliferation of target T cells. High baseline intratumoral frequencies of Teee were associated with checkpoint immunotherapy resistance and poor overall survival in patients with metastatic melanoma. CONCLUSIONS: These results demonstrate that a novel population of CD4+ T cells co-expressing CD38 and CD39 is found both in the peripheral blood and tumor of patients with melanoma and is associated with checkpoint immunotherapy resistance.


Subject(s)
Melanoma , Urinary Bladder Neoplasms , Humans , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , Coculture Techniques , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Tumor Microenvironment/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
8.
J Tissue Eng Regen Med ; 16(6): 550-558, 2022 06.
Article in English | MEDLINE | ID: mdl-35319825

ABSTRACT

Chronic ischemia triggers senescence in renal tubules and at least partly mediates kidney dysfunction and damage through a p16Ink4a -related mechanism. We previously showed that mesenchymal stromal/stem cells (MSCs) delivered systemically do not effectively decrease cellular senescence in stenotic murine kidneys. We hypothesized that selective MSC targeting to injured kidneys using an anti-KIM1 antibody (KIM-MSC) coating would enhance their ability to abrogate cellular senescence in murine renal artery stenosis (RAS). KIM-MSC were injected into transgenic INK-ATTAC mice, which are amenable for selective eradication of p16Ink4a+ cells, 4 weeks after induction of unilateral RAS. To determine whether KIM-MSC abolish p16Ink4a -dependent cellular senescence, selective clearance of p16Ink4a+ cells was induced in a subgroup of RAS mice using AP20187 over 3 weeks prior to KIM-MSC injection. Two weeks after KIM-MSC aortic injection, renal senescence, function, and tissue damage were assessed. KIM-MSC delivery decreased gene expression of senescence and senescence-associated secretory phenotype factors, and improved micro-MRI-derived stenotic-kidney glomerular filtration rate and perfusion. Renal fibrosis and tubular injury also improved after KIM-MSC treatment. Yet, their efficacy was slightly augmented by prior elimination of p16Ink4a+ senescent cells. Therefore, selective targeting of MSC to the injured kidney markedly improves their senolytic potency in murine RAS, despite incomplete eradication of p16+ cells. KIM-MSC may constitute a useful therapeutic strategy in chronic renal ischemic injury.


Subject(s)
Mesenchymal Stem Cells , Renal Artery Obstruction , Animals , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Ischemia/metabolism , Kidney/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Transgenic , Renal Artery Obstruction/metabolism
9.
Article in English | MEDLINE | ID: mdl-21785642

ABSTRACT

Safety pharmacology studies help in identifying preclinical adverse drug reactions. We carried out routine safety pharmacology with focus on cardiovascular variables and pharmacokinetic herb-drug interaction studies on rats fed with standardized traditional hydro-alcoholic extract and technology-based supercritical extract of Cassia auriculata for 12 weeks. Our studies indicate that both these extracts are pharmacologically safe and did not show any significant adverse reactions at the tested doses. The traditional hydro-alcoholic extract did not show any significant effect on pharmacokinetics; however, the technology-based supercritical extract caused a significant reduction in absorption of metformin. Our results indicate the need to include pharmacokinetic herb-drug interaction studies as evidence for safety especially for technology-based extracts.

10.
Cardiovasc Diabetol ; 9: 82, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21118576

ABSTRACT

BACKGROUND: Azelnidipine (AZL), a long-acting dihydropyridine-based calcium antagonist, has been recently approved and used for treating ischemic heart disease and cardiac remodeling after myocardial infarction, however, its effect on hyperglycemia-induced cardiac damage has not been studied. METHODS: This study examined the effect of AZL on circulating markers of cardiac damage, altered lipid and cytokines profile and markers of oxidative stress including homocysteine in diabetic rats. RESULTS: STZ induced diabetes caused a significant increase in blood glucose levels. It also resulted in an increase in the levels of homocysteine and cardiac damage markers, like Troponin-1, CK-MB, CK-NAC, uric acid, LDH and alkaline phosphatase. Moreover, there was an increase in the levels of proinflammatory cytokines like TNF-α, IFN-γ, and TGF-ß and decrease in the levels of IL-4 and IL-10. Additionally, there was increase in the levels of cholesterol, triglycerides, LDL, VLDL and a decrease in HDL in these animals. There was an altered antioxidant enzyme profile which resulted in a notable increase in the levels of oxidative stress markers like lipid peroxides, nitric oxide and carbonylated proteins. Compared with the untreated diabetic rats, AZL treatment significantly reduced the levels of troponin-1 (P < 0.05), CK-MB (P < 0.05), CK-NAC (P < 0.05), uric acid (P < 0.05), LDH (P < 0.05) and alkaline phosphatase (P < 0.05). It also reduced the levels of the TNF-α (P < 0.05), IFN-γ (P < 0.05), and TGF-ß (P < 0.05) and increased the levels of IL-4 (P < 0.05). A significant decrease in the serum cholesterol (P < 0.05), triglycerides (P < 0.05), LDL (P < 0.05), VLDL (P < 0.05) and a significant rise in levels of HDL (P < 0.05) was also observed. Treatment with AZL corrected the distorted antioxidant enzyme profile resulting in a significant decrease in the levels of lipid peroxides, nitric oxide and carbonylated proteins. CONCLUSION: Our results indicate that AZL treatment can reduce the risk of hyperglycemia induced metabolic disorders and its role can be further extended to explore its therapeutic potential in diabetic patients with cardiac complications.


Subject(s)
Azetidinecarboxylic Acid/analogs & derivatives , Calcium Channel Blockers/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Dihydropyridines/pharmacology , Heart Diseases/prevention & control , Myocardium/metabolism , Animals , Azetidinecarboxylic Acid/pharmacology , Biomarkers/blood , Blood Glucose/metabolism , Catalase/metabolism , Cytokines/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Glutathione/metabolism , Heart Diseases/etiology , Heart Diseases/metabolism , Homocysteine/blood , Inflammation Mediators/blood , Insulin/blood , Lipid Peroxidation/drug effects , Lipids/blood , Liver/drug effects , Liver/enzymology , Male , Oxidative Stress/drug effects , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
11.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Article in English | MEDLINE | ID: mdl-33199925

ABSTRACT

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Aging/metabolism , Membrane Glycoproteins/metabolism , NAD/biosynthesis , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Aging/immunology , Animals , Bone Marrow Transplantation , Cellular Senescence , HEK293 Cells , Humans , Inflammation/immunology , Liver/growth & development , Liver/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nicotinamide Mononucleotide/metabolism , Phenotype
12.
Cell Transplant ; 28(9-10): 1271-1278, 2019.
Article in English | MEDLINE | ID: mdl-31250656

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) belong to the endogenous cellular reparative system, and can be used exogenously in cell-based therapy. MSCs release extracellular vesicles (EVs), including exosomes and microvesicles, which mediate some of their therapeutic activity through intercellular communication. We have previously demonstrated that metabolic syndrome (MetS) modifies the cargo packed within swine EV, but whether it influences their phenotypical characteristics remains unclear. This study tested the hypothesis that MetS shifts the size distribution of MSC-derived EVs. Adipose tissue-derived MSC-EV subpopulations from Lean (n = 6) and MetS (n = 6) pigs were characterized for number and size using nanoparticle-tracking analysis, flow cytometry, and transmission electron microscopy. Expression of exosomal genes was determined using next-generation RNA-sequencing (RNA-seq). The number of EV released from Lean and MetS pig MSCs was similar, yet MetS-MSCs yielded a higher proportion of small-size EVs (202.4 ± 17.7 nm vs. 280.3 ± 15.1 nm), consistent with exosomes. RNA-seq showed that their EVs were enriched with exosomal markers. Lysosomal activity remained unaltered in MetS-MSCs. Therefore, MetS alters the size distribution of MSC-derived EVs in favor of exosome release. These observations may reflect MSC injury and membrane recycling in MetS or increased expulsion of waste products, and may have important implications for development of adequate cell-based treatments.


Subject(s)
Extracellular Vesicles/metabolism , Gene Expression Regulation , Mesenchymal Stem Cells/metabolism , Metabolic Syndrome/metabolism , RNA-Seq , Animals , Extracellular Vesicles/pathology , Mesenchymal Stem Cells/pathology , Metabolic Syndrome/pathology , Particle Size , Swine
13.
J Am Heart Assoc ; 8(11): e012584, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31433703

ABSTRACT

Background Hypertension may be associated with renal cellular injury. Cells in distress release extracellular vesicles (EVs), and their numbers in urine may reflect renal injury. Cellular senescence, an irreversible growth arrest in response to a noxious milieu, is characterized by release of proinflammatory cytokines. We hypothesized that EVs released by senescent nephron cells can be identified in urine of patients with hypertension. Methods and Results We recruited patients with essential hypertension (EH) or renovascular hypertension and healthy volunteers (n=14 each). Renal oxygenation was assessed using magnetic resonance imaging and blood samples collected from both renal veins for cytokine-level measurements. EVs isolated from urine samples were characterized by imaging flow cytometry based on specific markers, including p16 (senescence marker), calyxin (podocytes), urate transporter 1 (proximal tubules), uromodulin (ascending limb of Henle's loop), and prominin-2 (distal tubules). Overall percentage of urinary p16+ EVs was elevated in EH and renovascular hypertension patients compared with healthy volunteers and correlated inversely with renal function and directly with renal vein cytokine levels. Urinary levels of p16+/urate transporter 1+ were elevated in all hypertensive subjects compared with healthy volunteers, whereas p16+/prominin-2+ levels were elevated only in EH versus healthy volunteers and p16+/uromodulin+ in renovascular hypertension versus EH. Conclusions Levels of p16+ EVs are elevated in urine of hypertensive patients and may reflect increased proximal tubular cellular senescence. In EH, EVs originate also from distal tubules and in renovascular hypertension from Henle's loop. Hence, urinary EVs levels may be useful to identify intrarenal sites of cellular senescence.


Subject(s)
Cellular Senescence , Essential Hypertension/pathology , Extracellular Vesicles/pathology , Hypertension, Renovascular/pathology , Nephrons/pathology , Aged , Biomarkers/blood , Biomarkers/urine , Case-Control Studies , Cyclin-Dependent Kinase Inhibitor p16/urine , Cytokines/blood , Essential Hypertension/blood , Essential Hypertension/urine , Extracellular Vesicles/metabolism , Female , Humans , Hypertension, Renovascular/blood , Hypertension, Renovascular/urine , Male , Membrane Glycoproteins/urine , Middle Aged , Nephrons/metabolism , Organic Anion Transporters/urine , Organic Cation Transport Proteins/urine , Prospective Studies , Urine/cytology
14.
Sci Rep ; 9(1): 7286, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086203

ABSTRACT

The cellular origins of vasa vasorum are ill-defined and may involve circulating or local progenitor cells. We previously discovered that murine aortic adventitia contains Sca-1+CD45+ progenitors that produce macrophages. Here we investigated whether they are also vasculogenic. In aortas of C57BL/6 mice, Sca-1+CD45+ cells were localised to adventitia and lacked surface expression of endothelial markers (<1% for CD31, CD144, TIE-2). In contrast, they did show expression of CD31, CD144, TIE-2 and VEGFR2 in atherosclerotic ApoE-/- aortas. Although Sca-1+CD45+ cells from C57BL/6 aorta did not express CD31, they formed CD31+ colonies in endothelial differentiation media and produced interconnecting vascular-like cords in Matrigel that contained both endothelial cells and a small population of macrophages, which were located at branch points. Transfer of aortic Sca-1+CD45+ cells generated endothelial cells and neovessels de novo in a hindlimb model of ischaemia and resulted in a 50% increase in perfusion compared to cell-free control. Similarly, their injection into the carotid adventitia of ApoE-/- mice produced donor-derived adventitial and peri-adventitial microvessels after atherogenic diet, suggestive of newly formed vasa vasorum. These findings show that beyond its content of macrophage progenitors, adventitial Sca-1+CD45+ cells are also vasculogenic and may be a source of vasa vasorum during atherogenesis.


Subject(s)
Atherosclerosis/pathology , Cell Differentiation , Neovascularization, Pathologic/pathology , Stem Cells/physiology , Vasa Vasorum/pathology , Adventitia/cytology , Adventitia/pathology , Animals , Antigens, Ly/metabolism , Aorta/cytology , Aorta/pathology , Atherosclerosis/etiology , Diet, Atherogenic , Disease Models, Animal , Endothelial Cells/physiology , Female , Humans , Leukocyte Common Antigens/metabolism , Macrophages/physiology , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout, ApoE , Neovascularization, Pathologic/etiology , Vasa Vasorum/cytology
15.
Stem Cells Transl Med ; 7(5): 394-403, 2018 05.
Article in English | MEDLINE | ID: mdl-29446551

ABSTRACT

Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell-surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue-derived MSC with antibodies directed against kidney injury molecule-1 (ab-KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab-KIM1-coated MSC (KIM-MSC), or vehicle, were injected systemically into the carotid artery of 2-kidneys, 1-clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab-KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM-MSC compared to untreated MSC and compared to other organs. KIM-MSC-injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab-KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell-based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394-403.


Subject(s)
Hepatitis A Virus Cellular Receptor 1/metabolism , Kidney Diseases/metabolism , Kidney/metabolism , Mesenchymal Stem Cells/metabolism , Reperfusion Injury/metabolism , Adipose Tissue/metabolism , Animals , Apoptosis/physiology , Fibrosis/metabolism , Male , Mice , Oxidative Stress/physiology
16.
Sci Rep ; 8(1): 1263, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352176

ABSTRACT

To test the hypothesis that intrinsic renal scattered tubular cells (STC-like cells) contribute to repairing injured tubular epithelial cells (TEC) by releasing extracellular vesicle (EV). EV released from primary cultured pig STC-like cells were confirmed by electron microscopy. Antimycin-A (AMA)-induced injured proximal TEC (PK1 cells) were co-cultured with STC-like cells, STC-like cells-derived EV, or EV-free conditioned-medium for 3 days. Cellular injury, oxidative stress and mitochondrial function were assessed. Transfer of mitochondria from STC-like cells to TEC was assessed using Mito-trackers, and their viability by mitochondrial membrane potential assays. STC-like cells-derived EV were intra-arterially injected into mice 2 weeks after induction of unilateral renal artery stenosis. Two weeks later, renal hemodynamics were studied using magnetic-resonance-imaging, and renal fibrosis assessed ex-vivo. Cultured STC-like cells released EV that were uptaken by TEC. A protective effect conferred by STC-like cells in AMA-induced TEC injury was partly mimicked by their EV. Furthermore, STC-like cells-EV carried and transferred mitochondrial material to injured TEC, which partly restored mitochondrial function. In vivo, STC-like cells-derived EV engrafted in the stenotic kidney, and improved its perfusion and oxygenation. STC-like cells-EV exert protective effects on injured tubular cells in vitro and in vivo, partly by transferring STC-like cells mitochondria, which remain at least partly functional in recipient TEC.


Subject(s)
Extracellular Vesicles/transplantation , Kidney Tubules/cytology , Renal Artery Obstruction/therapy , Animals , Cells, Cultured , Coculture Techniques , Dactinomycin/toxicity , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Male , Membrane Potential, Mitochondrial , Mice , Oxidative Stress , Swine
17.
Hypertension ; 72(5): 1180-1188, 2018 11.
Article in English | MEDLINE | ID: mdl-30354805

ABSTRACT

Hypertension, an important cause of chronic kidney disease, is characterized by peritubular capillary (PTC) loss. Circulating levels of endothelial microparticles (EMPs) reflect systemic endothelial injury. We hypothesized that systemic and urinary PTC-EMPs levels would reflect renal microvascular injury in hypertensive patients. We prospectively measured by flow cytometry renal vein, inferior vena cava, and urinary levels of EMPs in essential (n=14) and renovascular (RVH; n=24) hypertensive patients and compared them with peripheral blood and urinary levels in healthy volunteers (n=14). PTC-EMPs were identified as urinary exosomes positive for the PTC marker plasmalemmal-vesicle-associated protein. In 7 RVH patients, PTC and fibrosis were also quantified in renal biopsy, and in 18 RVH patients, PTC-EMPs were measured again 3 months after continued medical therapy with or without stenting (n=9 each). Renal vein and systemic PTC-EMPs levels were not different among the groups, whereas their urinary levels were elevated in both RVH and essential hypertension versus healthy volunteers (56.8%±12.7% and 62.8%±10.7% versus 34.0%±17.8%; both P≤0.001). Urinary PTC-EMPs levels correlated directly with blood pressure and inversely with estimated glomerular filtration rate. Furthermore, in RVH, urinary PTC-EMPs levels correlated directly with stenotic kidney hypoxia, histological PTC count, and fibrosis and inversely with cortical perfusion. Three months after treatment, the change in urinary PTC-EMPs levels correlated inversely with a change in renal function ( r=-0.582; P=0.011). Therefore, urinary PTC-EMPs levels are increased in hypertensive patients and may reflect renal microcirculation injury, whereas systemic PTC-EMPs levels are unchanged. Urinary PTC-EMPs may be useful as novel biomarkers of intrarenal capillary loss.


Subject(s)
Capillaries/pathology , Cell-Derived Microparticles , Hypertension/pathology , Kidney/pathology , Aged , Female , Glomerular Filtration Rate , Humans , Hypertension/urine , Kidney/blood supply , Male , Middle Aged
18.
Sci Rep ; 8(1): 13948, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224726

ABSTRACT

Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMϕ, CD11cloMϕ are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMϕ and CD11cloMϕ increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using liposomal clodronate and bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways.


Subject(s)
Kidney/pathology , Monocytes/pathology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , CD11c Antigen/metabolism , Clodronic Acid/metabolism , Inflammation/metabolism , Inflammation/pathology , Kidney/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Phospholipids/metabolism
19.
PLoS One ; 12(3): e0174303, 2017.
Article in English | MEDLINE | ID: mdl-28333993

ABSTRACT

BACKGROUND: Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. METHODS: Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. RESULTS: Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. CONCLUSIONS: Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration.


Subject(s)
Adipose Tissue/chemistry , Extracellular Vesicles/chemistry , Mesenchymal Stem Cells/chemistry , Adipose Tissue/metabolism , Animals , Extracellular Vesicles/metabolism , Gene Expression Profiling , Mesenchymal Stem Cells/metabolism , MicroRNAs/analysis , Proteins/analysis , Proteomics , RNA, Messenger/analysis , Swine
20.
Sci Rep ; 6: 36120, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27786293

ABSTRACT

Extracellular vesicles (EVs) isolated from mesenchymal stem/stromal cells (MSCs) contribute to recovery of damaged tissue. We have previously shown that porcine MSC-derived EVs transport mRNA and miRNA capable of modulating cellular pathways in recipient cells. To identify candidate factors that contribute to the therapeutic effects of porcine MSC-derived EVs, we characterized their protein cargo using proteomics. Porcine MSCs were cultured from abdominal fat, and EVs characterized for expression of typical MSC and EV markers. LC-MS/MS proteomic analysis was performed and proteins classified. Functional pathway analysis was performed and five candidate proteins were validated by western blot. Proteomics analysis identified 5,469 distinct proteins in MSCs and 4,937 in EVs. The average protein expression was higher in MSCs vs. EVs. Differential expression analysis revealed 128 proteins that are selectively enriched in EVs versus MSCs, whereas 563 proteins were excluded from EVs. Proteins enriched in EVs are linked to a broad range of biological functions, including angiogenesis, blood coagulation, apoptosis, extracellular matrix remodeling, and regulation of inflammation. Excluded are mostly nuclear proteins, like proteins involved in nucleotide binding and RNA splicing. EVs have a selectively-enriched protein cargo with a specific biological signature that MSCs may employ for intercellular communication to facilitate tissue repair.


Subject(s)
Extracellular Vesicles/metabolism , Proteins/analysis , Proteomics , Adipose Tissue/cytology , Animals , Cells, Cultured , Chromatography, High Pressure Liquid , Cluster Analysis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microscopy, Electron, Transmission , Swine , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL