Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters

Publication year range
1.
J Sleep Res ; 33(1): e14048, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752591

ABSTRACT

Irregular sleep and non-optimal sleep duration separately have been shown to be associated with increased disease and mortality risk. We used data from the prospective cohort Multi-Ethnic Study of Atherosclerosis sleep study (2010-2013) to investigate: do aging adults whose sleep is objectively high in regularity in timing and duration, and of sufficient duration tend to have increased survival compared with those whose sleep is lower in regularity and duration, in a diverse US sample? At baseline, sleep was measured by 7-day wrist actigraphy, concurrent with at-home polysomnography and questionnaires. Objective metrics of sleep regularity and duration from actigraphy were used for statistical clustering using sparse k-means clustering. Two sleep patterns were identified: "regular-optimal" (average duration: 7.0 ± 1.0 hr obtained regularly) and "irregular-insufficient" (duration: 5.8 ± 1.4 hr obtained with twice the irregularity). Using proportional hazard models with multivariate adjustment, we estimated all-cause mortality hazard ratios. Among 1759 participants followed for a median of 7.0 years (Q1-Q3, 6.4-7.4 years), 176 deaths were recorded. The "regular-optimal" group had a 39% lower mortality hazard than did the "irregular-insufficient" sleep group (hazard ratio [95% confidence interval]: 0.61 [0.45, 0.83]) after adjusting for socio-demographics, lifestyle, medical comorbidities and sleep disorders. In conclusion, a "regular-optimal" sleep pattern was significantly associated with a lower hazard of all-cause mortality. The regular-optimal phenotype maps behaviourally to regular bed and wake times, suggesting sleep benefits of adherence to recommended healthy sleep practices, with further potential benefits for longevity.


Subject(s)
Atherosclerosis , Sleep , Adult , Humans , Prospective Studies , Polysomnography , Sleep Deprivation , Actigraphy
2.
Brain Topogr ; 37(2): 232-242, 2024 03.
Article in English | MEDLINE | ID: mdl-37548801

ABSTRACT

Microstate analysis is a promising technique for analyzing high-density electroencephalographic data, but there are multiple questions about methodological best practices. Between and within individuals, microstates can differ both in terms of characteristic topographies and temporal dynamics, which leads to analytic challenges as the measurement of microstate dynamics is dependent on assumptions about their topographies. Here we focus on the analysis of group differences, using simulations seeded on real data from healthy control subjects to compare approaches that derive separate sets of maps within subgroups versus a single set of maps applied uniformly to the entire dataset. In the absence of true group differences in either microstate maps or temporal metrics, we found that using separate subgroup maps resulted in substantially inflated type I error rates. On the other hand, when groups truly differed in their microstate maps, analyses based on a single set of maps confounded topographic effects with differences in other derived metrics. We propose an approach to alleviate both classes of bias, based on a paired analysis of all subgroup maps. We illustrate the qualitative and quantitative impact of these issues in real data by comparing waking versus non-rapid eye movement sleep microstates. Overall, our results suggest that even subtle chance differences in microstate topography can have profound effects on derived microstate metrics and that future studies using microstate analysis should take steps to mitigate this large source of error.


Subject(s)
Brain , Electroencephalography , Humans , Electroencephalography/methods , Healthy Volunteers , Probability , Upper Extremity
3.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858652

ABSTRACT

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Subject(s)
Electroencephalography , Schizophrenia , Humans , Schizophrenia/physiopathology , Schizophrenia/diagnosis , Electroencephalography/methods , Sleep/physiology , Research Design , Neurophysiology/methods , Adult , Male , Female , Biomarkers , Cohort Studies
4.
Neuroimage ; 279: 120319, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37574121

ABSTRACT

Human cognitive performance is a key function whose biological foundations have been partially revealed by genetic and brain imaging studies. The sleep electroencephalogram (EEG) is tightly linked to structural and functional features of the central nervous system and serves as another promising biomarker. We used data from MrOS, a large cohort of older men and cross-validated regularized regression to link sleep EEG features to cognitive performance in cross-sectional analyses. In independent validation samples 2.5-10% of variance in cognitive performance can be accounted for by sleep EEG features, depending on the covariates used. Demographic characteristics account for more covariance between sleep EEG and cognition than health variables, and consequently reduce this association by a greater degree, but even with the strictest covariate sets a statistically significant association is present. Sigma power in NREM and beta power in REM sleep were associated with better cognitive performance, while theta power in REM sleep was associated with worse performance, with no substantial effect of coherence and other sleep EEG metrics. Our findings show that cognitive performance is associated with the sleep EEG (r = 0.283), with the strongest effect ascribed to spindle-frequency activity. This association becomes weaker after adjusting for demographic (r = 0.186) and health variables (r = 0.155), but its resilience to covariate inclusion suggest that it also partially reflects trait-like differences in cognitive ability.


Subject(s)
Electroencephalography , Sleep , Male , Humans , Aged , Cross-Sectional Studies , Polysomnography/methods , Sleep/physiology , Electroencephalography/methods , Cognition
5.
Am J Respir Crit Care Med ; 206(10): 1271-1280, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35822943

ABSTRACT

Rationale: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epidemiologic evidence supporting the importance of genetic factors influencing OSA but limited data implicating specific genes. Objectives: To search for rare variants contributing to OSA severity. Methods: Leveraging high-depth genomic sequencing data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the CFS (Cleveland Family Study), followed by multistage gene-based association analyses in independent cohorts for apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. Measurements and Main Results: Linkage analysis in the CFS identified a suggestive linkage peak on chromosome 7q31 (LOD = 2.31). Gene-based analysis identified 21 noncoding rare variants in CAV1 (Caveolin-1) associated with lower AHI after accounting for multiple comparisons (P = 7.4 × 10-8). These noncoding variants together significantly contributed to the linkage evidence (P < 10-3). Follow-up analysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (P = 0.024) and higher minimum overnight oxygen saturation (P = 0.007). Conclusions: Rare variants in CAV1, a membrane-scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.


Subject(s)
Sleep Apnea, Obstructive , Humans , Caveolin 1/genetics , Sleep Apnea, Obstructive/genetics , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing
6.
Am J Hum Genet ; 105(5): 1057-1068, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31668705

ABSTRACT

Average arterial oxyhemoglobin saturation during sleep (AvSpO2S) is a clinically relevant measure of physiological stress associated with sleep-disordered breathing, and this measure predicts incident cardiovascular disease and mortality. Using high-depth whole-genome sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project and focusing on genes with linkage evidence on chromosome 8p23,1,2 we observed that six coding and 51 noncoding variants in a gene that encodes the GTPase-activating protein (DLC1) are significantly associated with AvSpO2S and replicated in independent subjects. The combined DLC1 association evidence of discovery and replication cohorts reaches genome-wide significance in European Americans (p = 7.9 × 10-7). A risk score for these variants, built on an independent dataset, explains 0.97% of the AvSpO2S variation and contributes to the linkage evidence. The 51 noncoding variants are enriched in regulatory features in a human lung fibroblast cell line and contribute to DLC1 expression variation. Mendelian randomization analysis using these variants indicates a significant causal effect of DLC1 expression in fibroblasts on AvSpO2S. Multiple sources of information, including genetic variants, gene expression, and methylation, consistently suggest that DLC1 is a gene associated with AvSpO2S.


Subject(s)
Chromosomes, Human, Pair 8/genetics , GTPase-Activating Proteins/genetics , Oxyhemoglobins/genetics , Sleep/genetics , Tumor Suppressor Proteins/genetics , Genetic Linkage/genetics , Genome-Wide Association Study , Humans , Whole Genome Sequencing/methods
7.
PLoS Genet ; 15(4): e1007739, 2019 04.
Article in English | MEDLINE | ID: mdl-30990817

ABSTRACT

Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardiometabolic disease and other comorbidities. Understanding the genetic bases for variations in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and 4 populations to identify genetic variants associated with three correlated measures of overnight oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery sample consisted of 8,326 individuals. Variants with p < 1 × 10(-6) were analyzed in a replication group of 14,410 individuals. We identified 3 significantly associated regions, including 2 regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with minimum SpO2 (rs78136548 p = 2.70 × 10(-10)). SNPs at 10q22 were associated with all three traits including average SpO2 (rs72805692 p = 4.58 × 10(-8)). SNPs in both regions were associated in over 20,000 individuals and are supported by prior associations or functional evidence. Four additional significant regions were detected in secondary sex-stratified and combined discovery and replication analyses, including a region overlapping Reelin, a known marker of respiratory complex neurons.These are the first genome-wide significant findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflammatory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute to nocturnal hypoxemia.


Subject(s)
Hexokinase/genetics , Interleukin-18 Receptor alpha Subunit/genetics , Oxyhemoglobins/metabolism , Sleep/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Adhesion Molecules, Neuronal/genetics , Computational Biology , Extracellular Matrix Proteins/genetics , Female , Gene Regulatory Networks , Genetic Variation , Genome-Wide Association Study , Humans , Hypoxia/blood , Hypoxia/genetics , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nerve Tissue Proteins/genetics , Oxygen/blood , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Reelin Protein , Serine Endopeptidases/genetics , Sleep Apnea Syndromes/blood , Sleep Apnea Syndromes/genetics , Young Adult
8.
Hum Mol Genet ; 28(4): 675-687, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30403821

ABSTRACT

Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality. Its prevalence and severity vary across ancestral background. Although OSA traits are heritable, few genetic associations have been identified. To identify genetic regions associated with OSA and improve statistical power, we applied admixture mapping on three primary OSA traits [the apnea hypopnea index (AHI), overnight average oxyhemoglobin saturation (SaO2) and percentage time SaO2 < 90%] and a secondary trait (respiratory event duration) in a Hispanic/Latino American population study of 11 575 individuals with significant variation in ancestral background. Linear mixed models were performed using previously inferred African, European and Amerindian local genetic ancestry markers. Global African ancestry was associated with a lower AHI, higher SaO2 and shorter event duration. Admixture mapping analysis of the primary OSA traits identified local African ancestry at the chromosomal region 2q37 as genome-wide significantly associated with AHI (P < 5.7 × 10-5), and European and Amerindian ancestries at 18q21 suggestively associated with both AHI and percentage time SaO2 < 90% (P < 10-3). Follow-up joint ancestry-SNP association analyses identified novel variants in ferrochelatase (FECH), significantly associated with AHI and percentage time SaO2 < 90% after adjusting for multiple tests (P < 8 × 10-6). These signals contributed to the admixture mapping associations and were replicated in independent cohorts. In this first admixture mapping study of OSA, novel associations with variants in the iron/heme metabolism pathway suggest a role for iron in influencing respiratory traits underlying OSA.


Subject(s)
Ferrochelatase/genetics , Genome-Wide Association Study , Sleep Apnea, Obstructive/genetics , Aged , Chromosome Mapping , Female , Genotype , Hispanic or Latino/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Polysomnography , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/physiopathology , White People/genetics
9.
Mol Psychiatry ; 25(10): 2455-2467, 2020 10.
Article in English | MEDLINE | ID: mdl-31591465

ABSTRACT

Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke's R2 = 0.032; liability R2 = 0.017; P < 10-52), Latino (Nagelkerke's R2 = 0.089; liability R2 = 0.021; P < 10-58), and European individuals (Nagelkerke's R2 = 0.089; liability R2 = 0.037; P < 10-113), further highlighting the advantages of incorporating data from diverse human populations.


Subject(s)
Black People/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Hispanic or Latino/genetics , Schizophrenia/genetics , Female , Genetic Loci , Humans , Male , Polymorphism, Single Nucleotide/genetics
10.
J Sleep Res ; 30(2): e13033, 2021 04.
Article in English | MEDLINE | ID: mdl-32198950

ABSTRACT

Discrepancies between actigraphic and self-reported sleep measures are common. Studies of people with insomnia, in whom both sleep disturbances and discrepancy are common, suggest disturbances and discrepancy reflect differences in the sleeping brain's activity measurable using spectral electroencephalogram (EEG). Disentangling effects of discrepancy and disturbance on sleep EEG could help target research on the consequences and treatments of different sleep phenotypes. We therefore categorized participants in a cohort study including 2,850 men (average age = 76 years, standard deviation = 5.5) into four groups using median splits on actigraphic and self-reported sleep efficiency (SE). We compared spectral power between these groups in 1-Hz bins up to 24 Hz. Compared with the concordant-high SE group: (a) the group with high actigraphic and low self-reported SE had higher spectral power from 11-15 Hz across the night; (b) both groups with low actigraphic SE had higher power across the 15-24 Hz range, predominantly in early cycles, and greater slow frequency power in later cycles. These findings suggest that perceived wakefulness undetected by actigraphy may result from or drive activity corresponding to spindles. We also found, consistent with hyperarousal models, that low SE detectable via actigraphy was related to higher frequency power in the beta range; actigraph-measured inefficiency was also associated with later slow oscillations, potentially representing attempts to dissipate homeostatic drive elevated from earlier hyperarousal. These distinct spectral EEG markers (of low SE measured with actigraphy vs. low perceived SE that is not captured by actigraphy) may have different causes or consequences.


Subject(s)
Actigraphy/methods , Electroencephalography/methods , Sleep Wake Disorders/diagnosis , Sleep/physiology , Cohort Studies , Humans , Male , Self Report
11.
Nat Rev Genet ; 15(5): 335-46, 2014 May.
Article in English | MEDLINE | ID: mdl-24739678

ABSTRACT

Significance testing was developed as an objective method for summarizing statistical evidence for a hypothesis. It has been widely adopted in genetic studies, including genome-wide association studies and, more recently, exome sequencing studies. However, significance testing in both genome-wide and exome-wide studies must adopt stringent significance thresholds to allow multiple testing, and it is useful only when studies have adequate statistical power, which depends on the characteristics of the phenotype and the putative genetic variant, as well as the study design. Here, we review the principles and applications of significance testing and power calculation, including recently proposed gene-based tests for rare variants.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Testing/statistics & numerical data , Genome-Wide Association Study/statistics & numerical data , Case-Control Studies , Data Interpretation, Statistical , Gene Frequency , Genome-Wide Association Study/standards , Genotype , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/statistics & numerical data
12.
Nature ; 506(7487): 179-84, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24463507

ABSTRACT

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Subject(s)
Models, Neurological , Mutation/genetics , Nerve Net/metabolism , Neural Pathways/metabolism , Schizophrenia/genetics , Schizophrenia/physiopathology , Synapses/metabolism , Child Development Disorders, Pervasive/genetics , Cytoskeletal Proteins/metabolism , Exome/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Intellectual Disability/genetics , Mutation Rate , Nerve Net/physiopathology , Nerve Tissue Proteins/metabolism , Neural Pathways/physiopathology , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Substrate Specificity
13.
Nature ; 506(7487): 185-90, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24463508

ABSTRACT

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Subject(s)
Multifactorial Inheritance/genetics , Mutation/genetics , Schizophrenia/genetics , Autistic Disorder/genetics , Calcium Channels/genetics , Cytoskeletal Proteins/genetics , DNA Copy Number Variations/genetics , Disks Large Homolog 4 Protein , Female , Fragile X Mental Retardation Protein/metabolism , Genome-Wide Association Study , Humans , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics
14.
Twin Res Hum Genet ; 23(2): 87-89, 2020 04.
Article in English | MEDLINE | ID: mdl-32638684

ABSTRACT

Dr Nick Martin has made enormous contributions to the field of behavior genetics over the past 50 years. Of his many seminal papers that have had a profound impact, we focus on his early work on the power of twin studies. He was among the first to recognize the importance of sample size calculation before conducting a study to ensure sufficient power to detect the effects of interest. The elegant approach he developed, based on the noncentral chi-squared distribution, has been adopted by subsequent researchers for other genetic study designs, and today remains a standard tool for power calculations in structural equation modeling and other areas of statistical analysis. The present brief article discusses the main aspects of his seminal paper, and how it led to subsequent developments, by him and others, as the field of behavior genetics evolved into the present era.


Subject(s)
Genetics, Behavioral/history , Twin Studies as Topic/history , Twins/genetics , Genetics, Behavioral/statistics & numerical data , History, 20th Century , History, 21st Century , Humans , Sample Size , Twin Studies as Topic/statistics & numerical data , Twins/statistics & numerical data
15.
Eur Heart J ; 40(14): 1149-1157, 2019 04 07.
Article in English | MEDLINE | ID: mdl-30376054

ABSTRACT

AIMS: Apnoea-hypopnoea index (AHI), the universal clinical metric of sleep apnoea severity, poorly predicts the adverse outcomes of sleep apnoea, potentially because the AHI, a frequency measure, does not adequately capture disease burden. Therefore, we sought to evaluate whether quantifying the severity of sleep apnoea by the 'hypoxic burden' would predict mortality among adults aged 40 and older. METHODS AND RESULTS: The samples were derived from two cohort studies: The Outcomes of Sleep Disorders in Older Men (MrOS), which included 2743 men, age 76.3 ± 5.5 years; and the Sleep Heart Health Study (SHHS), which included 5111 middle-aged and older adults (52.8% women), age: 63.7 ± 10.9 years. The outcomes were all-cause and Cardiovascular disease (CVD)-related mortality. The hypoxic burden was determined by measuring the respiratory event-associated area under the desaturation curve from pre-event baseline. Cox models were used to calculate the adjusted hazard ratios for hypoxic burden. Unlike the AHI, the hypoxic burden strongly predicted CVD mortality and all-cause mortality (only in MrOS). Individuals in the MrOS study with hypoxic burden in the highest two quintiles had hazard ratios of 1.81 [95% confidence interval (CI) 1.25-2.62] and 2.73 (95% CI 1.71-4.36), respectively. Similarly, the group in the SHHS with hypoxic burden in the highest quintile had a hazard ratio of 1.96 (95% CI 1.11-3.43). CONCLUSION: The 'hypoxic burden', an easily derived signal from overnight sleep study, predicts CVD mortality across populations. The findings suggest that not only the frequency but the depth and duration of sleep related upper airway obstructions, are important disease characterizing features.


Subject(s)
Cardiovascular Diseases/mortality , Hypoxia/epidemiology , Severity of Illness Index , Sleep Apnea, Obstructive/epidemiology , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , United States/epidemiology
16.
Genet Epidemiol ; 42(6): 539-550, 2018 09.
Article in English | MEDLINE | ID: mdl-29900581

ABSTRACT

In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions.


Subject(s)
Chromosomes, Human, X/genetics , Genome-Wide Association Study/statistics & numerical data , Alleles , Female , Gene Frequency/genetics , Genotype , Humans , Male , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Regression Analysis , X Chromosome Inactivation/genetics
17.
Nat Rev Genet ; 14(7): 483-95, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23752797

ABSTRACT

Genome-wide association studies have identified many variants that each affects multiple traits, particularly across autoimmune diseases, cancers and neuropsychiatric disorders, suggesting that pleiotropic effects on human complex traits may be widespread. However, systematic detection of such effects is challenging and requires new methodologies and frameworks for interpreting cross-phenotype results. In this Review, we discuss the evidence for pleiotropy in contemporary genetic mapping studies, new and established analytical approaches to identifying pleiotropic effects, sources of spurious cross-phenotype effects and study design considerations. We also outline the molecular and clinical implications of such findings and discuss future directions of research.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genetic Variation , Phenotype , Alleles , Chromosome Mapping , Genome-Wide Association Study , Genotype , Humans , Models, Genetic , Multivariate Analysis
18.
Am J Hum Genet ; 97(4): 576-92, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26430803

ABSTRACT

Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase.


Subject(s)
Linkage Disequilibrium/genetics , Models, Theoretical , Multifactorial Inheritance/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Genome-Wide Association Study , Genotype , Humans , Phenotype , Prognosis , Quantitative Trait Loci
19.
Am J Hum Genet ; 95(5): 535-52, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25439723

ABSTRACT

Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg(2)) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg(2) from imputed SNPs (5.1× enrichment; p = 3.7 × 10(-17)) and 38% (SE = 4%) of hg(2) from genotyped SNPs (1.6× enrichment, p = 1.0 × 10(-4)). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg(2) despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Inheritance Patterns/genetics , Open Reading Frames/genetics , Regulatory Elements, Transcriptional/genetics , Computer Simulation , Humans , Models, Genetic
20.
N Engl J Med ; 371(26): 2477-87, 2014 Dec 25.
Article in English | MEDLINE | ID: mdl-25426838

ABSTRACT

BACKGROUND: Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. METHODS: We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. RESULTS: Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow-biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. CONCLUSIONS: Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.).


Subject(s)
Blood , Cell Transformation, Neoplastic/genetics , Hematologic Neoplasms/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/physiology , Mutation , Adult , Age Factors , Aged , Aged, 80 and over , Clone Cells , DNA Mutational Analysis , Exome , Hematologic Neoplasms/physiopathology , Humans , Middle Aged , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL