Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Nature ; 585(7826): 551-556, 2020 09.
Article in English | MEDLINE | ID: mdl-32908312

ABSTRACT

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Environmental Policy/trends , Human Activities/trends , Diet , Diet, Vegetarian/trends , Food Supply , Humans , Sustainable Development/trends
2.
Proc Biol Sci ; 290(1997): 20230464, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37072041

ABSTRACT

To safeguard nature, we must understand the drivers of biodiversity loss. Time-delayed biodiversity responses to environmental changes (ecological lags) are often absent from models of biodiversity change, despite their well-documented existence. We quantify how lagged responses to climate and land-use change have influenced mammal and bird populations around the world, while incorporating effects of direct exploitation and conservation interventions. Ecological lag duration varies between drivers, vertebrate classes and body size groupings-e.g. lags linked to climate-change impacts are 13 years for small birds, rising to 40 years for larger species. Past warming and land conversion generally combine to predict population declines; however, such conditions are associated with population increases for small mammals. Positive effects of management (>+4% annually for large mammals) and protected areas (>+6% annually for large birds) on population trends contrast with the negative impact of exploitation (<-7% annually for birds), highlighting the need to promote sustainable use. Model projections suggest a future with winners (e.g. large birds) and losers (e.g. medium-sized birds), with current/recent environmental change substantially influencing abundance trends to 2050. Without urgent action, including effective conservation interventions and promoting sustainable use, ambitious targets to stop declines by 2030 may already be slipping out of reach.


Subject(s)
Biodiversity , Vertebrates , Animals , Birds/physiology , Mammals , Climate Change , Ecosystem , Conservation of Natural Resources
3.
PLoS Biol ; 16(12): e2006841, 2018 12.
Article in English | MEDLINE | ID: mdl-30513079

ABSTRACT

Human use of the land (for agriculture and settlements) has a substantial negative effect on biodiversity globally. However, not all species are adversely affected by land use, and indeed, some benefit from the creation of novel habitat. Geographically rare species may be more negatively affected by land use than widespread species, but data limitations have so far prevented global multi-clade assessments of land-use effects on narrow-ranged and widespread species. We analyse a large, global database to show consistent differences in assemblage composition. Compared with natural habitat, assemblages in disturbed habitats have more widespread species on average, especially in urban areas and the tropics. All else being equal, this result means that human land use is homogenizing assemblage composition across space. Disturbed habitats show both reduced abundances of narrow-ranged species and increased abundances of widespread species. Our results are very important for biodiversity conservation because narrow-ranged species are typically at higher risk of extinction than widespread species. Furthermore, the shift to more widespread species may also affect ecosystem functioning by reducing both the contribution of rare species and the diversity of species' responses to environmental changes among local assemblages.


Subject(s)
Agriculture/methods , Biodiversity , Conservation of Natural Resources/methods , Animals , Ecosystem , Humans , Natural Resources
4.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25832402

ABSTRACT

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Subject(s)
Biodiversity , Human Activities , Animals , Conservation of Natural Resources/trends , Ecology/trends , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Models, Biological , Population Dynamics , Species Specificity
5.
Ecol Lett ; 19(8): 899-906, 2016 08.
Article in English | MEDLINE | ID: mdl-27278857

ABSTRACT

Co-dependent geological and climatic changes obscure how species interact in deep time. The interplay between these environmental factors makes it hard to discern whether ecological competition exerts an upper limit on species richness. Here, using the exceptional fossil record of Cenozoic Era macroperforate planktonic foraminifera, we assess the evidence for alternative modes of macroevolutionary competition. Our models support an environmentally dependent macroevolutionary form of contest competition that yields finite upper bounds on species richness. Models of biotic competition assuming unchanging environmental conditions were overwhelmingly rejected. In the best-supported model, temperature affects the per-lineage diversification rate, while both temperature and an environmental driver of sediment accumulation defines the upper limit. The support for contest competition implies that incumbency constrains species richness by restricting niche availability, and that the number of macroevolutionary niches varies as a function of environmental changes.


Subject(s)
Biodiversity , Biological Evolution , Foraminifera/classification , Foraminifera/genetics , Fossils , Phylogeny , Animals , Climate , Ecosystem , Models, Biological
6.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25143038

ABSTRACT

Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups--invertebrates, 'herptiles' (reptiles and amphibians), mammals and birds--respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and--within birds and mammals--between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species.


Subject(s)
Biodiversity , Forests , Models, Theoretical , Tropical Climate , Agriculture/methods , Animals , Ecosystem , Humans , Population Density , Satellite Imagery
7.
Trends Ecol Evol ; 39(2): 109-115, 2024 02.
Article in English | MEDLINE | ID: mdl-37981565

ABSTRACT

Indigenous and traditional practices based on ethnoecological knowledge are fundamental to biodiversity stewardship and sustainable use. Knowledge partnerships between Indigenous Peoples, traditional local communities, and ecologists can produce richer and fairer understandings of nature. We identify key topical areas where such collaborations can positively transform science, policy, and practice.


Subject(s)
Ecology , Knowledge , Biodiversity
8.
Science ; 384(6694): 458-465, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662818

ABSTRACT

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Subject(s)
Biodiversity , Climate Change , Extinction, Biological
9.
Ecology ; 94(12): 2861-72, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24597231

ABSTRACT

Phylogenetic analyses of assemblage membership provide insight into how ecological communities are structured. However, despite the scale-dependency of many ecological processes, little is known about how assemblage and source pool size definitions can be altered, either alone or together, to provide insight into how ecological diversity is maintained. Moreover, although studies have acknowledged that different clades within an assemblage may be structured by different forces, there has been no attempt to relate the age of a clade to its community phylogenetic structure. Using assemblage phylogenies and spatially explicit data for trees from Barro Colorado Island (BCI), we show that larger assemblages, and assemblages with larger source pools, are more phylogenetically clustered. We argue that this reflects competition, the influence of pathogens, and chance assembly at smaller spatial scales, all operating within the context of wider-scale habitat filtering. A community phylogenetic measure that is based on a null model derived explicitly from trait evolution theory, D, is better able to detect these differences than commonly used measures such as SES(MPD) and SES(MNTD). We also detect a moderate tendency for stronger phylogenetic clustering in younger clades, which suggests that coarse analyses of diverse assemblages may be missing important variation among clades. Our results emphasize the importance of spatial and phylogenetic scale in community phylogenetics and show how varying these scales can help to untangle complex assembly processes.


Subject(s)
Islands , Trees/physiology , Models, Biological , Panama , Phylogeny , Population Dynamics , Time Factors , Trees/chemistry
10.
Nature ; 446(7135): 507-12, 2007 Mar 29.
Article in English | MEDLINE | ID: mdl-17392779

ABSTRACT

Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.


Subject(s)
Biological Evolution , Mammals/classification , Mammals/physiology , Animals , Dinosaurs/classification , Dinosaurs/physiology , Extinction, Biological , Fossils , Genetic Speciation , History, Ancient , Mammals/genetics , Models, Biological , Phylogeny , Time Factors
11.
Nat Commun ; 14(1): 2090, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045818

ABSTRACT

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Subject(s)
Ants , Ecosystem , Animals , Introduced Species , Incidence , Biodiversity , Mammals
12.
Am Nat ; 180(2): 246-56, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22766934

ABSTRACT

Ecology, evolution, and historical events all contribute to biogeographic patterns, but studies that integrate them are scarce. Here we focus on how biotic exchanges of mammals during the Late Cenozoic have contributed to current geographic body size patterns. We explore differences in the environmental correlates and phylogenetic patterning of body size between groups of mammals participating and not participating in past biotic exchanges. Both the association of body size with environmental predictors and its phylogenetic signal were stronger for groups that immigrated into North or South America than for indigenous groups. This pattern, which held when extinct clades were included in the analyses, can be interpreted on the basis of the length of time that clades have had to diversify and occupy niche space. Moreover, we identify a role for historical events, such as Cenozoic migrations, in configuring contemporary mammal body size patterns and illustrate where these influences have been strongest for New World mammals.


Subject(s)
Animal Migration , Biological Evolution , Body Size , Mammals/anatomy & histology , Animals , Central America , Climate , Ecosystem , Mammals/physiology , North America , Phylogeny , South America
13.
Proc Biol Sci ; 279(1732): 1300-9, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-21993508

ABSTRACT

The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence (Dendroica, Plethodon and Heliconius). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.


Subject(s)
Evolution, Molecular , Fossils , Animals , Extinction, Biological , Foraminifera/classification , Foraminifera/genetics , Genetic Variation , Lepidoptera/classification , Lepidoptera/genetics , Models, Genetic , Passeriformes/classification , Passeriformes/genetics , Phylogeny , Urodela/classification , Urodela/genetics
14.
Biol Lett ; 8(1): 139-42, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-21900313

ABSTRACT

Birth-death models are central to much macroevolutionary theory. The fundamental parameters of these models concern durations. Different species concepts realize different species durations because they represent different ideas of what birth (speciation) and death (extinction) mean. Here, we use Cenozoic macroperforate planktonic foraminifera as a case study to ask: what are the dynamical consequences of changing the definition of birth and death? We show strong evidence for biotic constraints on diversification using evolutionary species, but less with morphospecies. Discussing reasons for this discrepancy, we emphasize that clarity of species concept leads to clarity of meaning when interpreting macroevolutionary birth-death models.


Subject(s)
Biological Evolution , Classification/methods , Extinction, Biological , Foraminifera/cytology , Genetic Speciation , Models, Biological , Computer Simulation , Species Specificity
15.
Sci Adv ; 8(45): eabm9982, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36351024

ABSTRACT

Effective policies to halt biodiversity loss require knowing which anthropogenic drivers are the most important direct causes. Whereas previous knowledge has been limited in scope and rigor, here we statistically synthesize empirical comparisons of recent driver impacts found through a wide-ranging review. We show that land/sea use change has been the dominant direct driver of recent biodiversity loss worldwide. Direct exploitation of natural resources ranks second and pollution third; climate change and invasive alien species have been significantly less important than the top two drivers. The oceans, where direct exploitation and climate change dominate, have a different driver hierarchy from land and fresh water. It also varies among types of biodiversity indicators. For example, climate change is a more important driver of community composition change than of changes in species populations. Stopping global biodiversity loss requires policies and actions to tackle all the major drivers and their interactions, not some of them in isolation.

16.
BMC Ecol Evol ; 22(1): 135, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36397002

ABSTRACT

BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.


Subject(s)
Ecosystem , Soil , Biodiversity , Soil Microbiology , Biota
17.
Biol Lett ; 7(5): 644-6, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-21527505

ABSTRACT

On 9 March, over 150 biologists gathered in London for the Centre for Ecology and Evolution spring symposium, 'Integrating Ecology into Macroevolutionary Research'. The event brought together researchers from London-based institutions alongside others from across the UK, Europe and North America for a day of talks. The meeting highlighted methodological advances and recent analyses of exemplar datasets focusing on the exploration of the role of ecological processes in shaping macroevolutionary patterns.


Subject(s)
Ecology , Evolution, Molecular , Animals , Fossils
18.
Proc Natl Acad Sci U S A ; 105(12): 4786-91, 2008 Mar 25.
Article in English | MEDLINE | ID: mdl-18347335

ABSTRACT

The prospect of finding macroevolutionary trends and rules in the history of life is tremendously appealing, but very few pervasive trends have been found. Here, we demonstrate a parallel increase in the morphological complexity of most of the deep lineages within a major clade. We focus on the Crustacea, measuring the morphological differentiation of limbs. First, we show a clear trend of increasing complexity among 66 free-living, ordinal-level taxa from the Phanerozoic fossil record. We next demonstrate that this trend is pervasive, occurring in 10 or 11 of 12 matched-pair comparisons (across five morphological diversity indices) between extinct Paleozoic and related Recent taxa. This clearly differentiates the pattern from the effects of lineage sorting. Furthermore, newly appearing taxa tend to have had more types of limbs and a higher degree of limb differentiation than the contemporaneous average, whereas those going extinct showed higher-than-average limb redundancy. Patterns of contemporary species diversity partially reflect the paleontological trend. These results provide a rare demonstration of a large-scale and probably driven trend occurring across multiple independent lineages and influencing both the form and number of species through deep time and in the present day.


Subject(s)
Crustacea/anatomy & histology , Crustacea/genetics , Phylogeny , Animals , Biodiversity , Extinction, Biological , Extremities/anatomy & histology , Fossils , History, Ancient , Regression Analysis , Species Specificity , Time Factors
20.
Proc Natl Acad Sci U S A ; 105 Suppl 1: 11556-63, 2008 Aug 12.
Article in English | MEDLINE | ID: mdl-18695230

ABSTRACT

Phylogenies describe the origins and history of species. However, they can also help to predict species' fates and so can be useful tools for managing the future of biodiversity. This article starts by sketching how phylogenetic, geographic, and trait information can be combined to elucidate present mammalian diversity patterns and how they arose. Recent diversification rates and standing diversity show different geographic patterns, indicating that cradles of diversity have moved over time. Patterns in extinction risk reflect both biological differences among mammalian lineages and differences in threat intensity among regions. Phylogenetic comparative analyses indicate that for small-bodied mammals, extinction risk is governed mostly by where the species live and the intensity of the threats, whereas for large-bodied mammals, ecological differences also play an important role. This modeling approach identifies species whose intrinsic biology renders them particularly vulnerable to increased human pressure. We outline how the approach might be extended to consider future trends in anthropogenic drivers, to identify likely future battlegrounds of mammalian conservation, and the likely casualties. This framework could help to highlight consequences of choosing among different future climatic and socioeconomic scenarios. We end by discussing priority-setting, showing how alternative currencies for diversity can suggest very different priorities. We argue that aiming to maximize long-term evolutionary responses is inappropriate, that conservation planning needs to consider costs as well as benefits, and that proactive conservation of largely intact systems should be part of a balanced strategy.


Subject(s)
Mammals/classification , Phylogeny , Animals , Extinction, Biological , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL