Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; : e2404579, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126178

ABSTRACT

Designing robust photocatalysts with broad light absorption, effective charge separation, and sufficient reactive sites is critical for achieving efficient solar energy conversion. However, realizing these aims simultaneously through a single material modulation approach poses a challenge. Here, a 2D ultrathin oxygen vacancy (Ov)-rich Bi2W0.2Mo0.8O6 solid solution photocatalyst is designed and fabricated to tackle the dilemma through component and structure optimization. Specifically, the construction of a solid solution with ultrathin structure initially facilitates the separation of photoinduced electron-hole pairs, while the introduction of Ov strengthens such separation. In the meantime, the presence of Ov extends light absorption to the NIR region, triggering a photothermal effect that further enhances the charge separation and accelerates the redox reaction. As such, photoinduced charge carriers in the Ov-Bi2W0.2Mo0.8O6 are separated step by step via the synergistic action of 2D solid solution, OV, and solar heating. Furthermore, the introduction of OV exposes surface metal sites that serve as reactive Lewis acid sites, promoting the adsorption and activation of toluene. Consequently, the designed Ov-Bi2W0.2Mo0.8O6 reveals an enhanced photothermal catalytic toluene oxidation rate of 2445 µmol g-1 h-1 under a wide spectrum without extra heat input. The performance is 9.0 and 3.9 times that of Bi2WO6 and Bi2MoO6 nanosheets, respectively.

2.
Small ; 20(30): e2312116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38446107

ABSTRACT

Flexible zinc-ion batteries have garnered significant attention in the realm of wearable technology. However, the instability of hydrogel electrolytes in a wide-temperature range and uncontrollable side reactions of the Zn electrode have become the main problems for practical applications. Herein, N,N-dimethylformamide (DMF) to design a binary solvent (H2O-DMF) is introduced and combined it with polyacrylamide (PAM) and ZnSO4 to synthesize a hydrogel electrolyte (denoted as PZD). The synergistic effect of DMF and PAM not only guides Zn2+ deposition on Zn(002) crystal plane and isolates H2O from the Zn anode, but also breaks the hydrogen bonding network between water to improve the wide-temperature range stability of hydrogel electrolytes. Consequently, the symmetric cell utilizing PZD can stably cycle over 5600 h at 0.5 mA cm- 2@0.5 mAh cm-2. Furthermore, the Zn//PZD//MnO2 full cell exhibits favorable wide-temperature range adaptability (for 16000 cycles at 3 A g-1 under 25 °C, 750 cycles with 98 mAh g-1 at 0.1 A g-1 under -20 °C) and outstanding mechanical properties (for lighting up the LEDs under conditions of pressure, bending, cutting, and puncture). This work proposes a useful modification for designing a high-performance hydrogel electrolyte, which provides a reference for investigating the practical flexible aqueous batteries.

3.
Mater Horiz ; 11(14): 3386-3395, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38689529

ABSTRACT

High-power electronic architectures and devices require elastic thermally conductive materials. The use of epoxy resin in thermal management is limited due to its rigidity. Here, based on epoxy vitrimer, flexible polyethylene glycol (PEG) chains are introduced into covalent adaptable networks to construct covalent-noncovalent interpenetrating networks, enabling the elasticity of epoxy resins. Compared to traditional silicone-based thermal interface materials, the newly developed elastic epoxy resin shows the advantages of reprocessability, self-healing, and no small molecule release. Results show that, even after being filled with boron nitride and liquid metal, the material maintains its resilience, reprocessability and self-healing properties. Leveraging these characteristics, the composite can be further processed into thin films through a repeated pressing-rolling technique that facilitates the forced orientation of the fillers. Subsequently, the bulk composites are reconstructed using a film-stacking method. The results indicate that the thermal conductivity of the reconstructed bulk composite reaches 3.66 W m-1 K-1, achieving a 68% increase compared to the composite prepared through blending. Due to the existence of covalent adaptable networks, the inorganic and inorganic components of the composite prepared in this work can be completely separated under mild conditions, realizing closed-loop recycling.

4.
Sci Total Environ ; 934: 173133, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734091

ABSTRACT

The high use of plastic wraps leads to significant environmental pollution. In this study, the surface structure and microbial community evolution of commercially available plastic wraps [polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and polylactic acid (PLA)] in constructed wetlands (CWs) were investigated. The results indicated that all plastic wraps gradually decreased in molecular weight, crystallinity, melting, and crystallization temperatures, whereas a gradual increase was observed in the surface roughness, polymer dispersity index (PDI), carbonyl index (CI) and Shannon index of microorganisms colonizing the CWs. The aging rate of the plastic wrap was in the order: PLA > PVC > PE > PVDC, at the same site in the CWs, and it was in the order: soil surface > plant roots > subsoil, for the same plastic wrap. The diversity of microorganisms colonizing the same plastic wrap was in the order: plant roots > subsoil > soil surface. The Shannon indices of microorganisms on plastic wraps were lower than those in the soil, indicating that the diversity of microorganisms colonizing plastic wraps is limited. Additionally, the microbial community structure on the plastic surface was co-differentiated by the plastic type, placement position in the CWs, and aging time. Significantly different microbial community structures were found on the PVC and PVDC wrap surfaces, revealing that the chlorine in plastics limits microbial diversity. Unclassified members of Rhizobiaceae and Pseudomonadaceae were the dominant genera on the surface of the plastic wraps, suggesting that they may be the microorganisms involved in plastic degradation processes. The study provides valuable perspectives to facilitate a comprehensive understanding of the migration, fate, and environmental risks associated with microplastics (MPs) in wetlands.


Subject(s)
Microbiota , Plastics , Wetlands , Soil Microbiology , Water Pollutants, Chemical/analysis
5.
Int J Biol Macromol ; 271(Pt 2): 132375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759855

ABSTRACT

Anti-counterfeiting in 3D printing has gained significant attention, however, current approaches often fall short of fully capitalizing on the inherent advantages of personalized manufacturing with this technology. Herein, we propose an embedded anti-counterfeiting scheme for additive manufacturing, accompanied by a novel fluorescent encrypted quick response (QR) method. This approach involves the development of a 3D printing filament utilizing poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) bio-composites as the primary filament matrix, with varying quantities of Chlorella powder incorporated. The resulting filament has a good thermal stability near 200 °C and exhibits a distinctive red fluorescence under ultraviolet light, with the emission peak at 677 nm when excited by 415 nm blue light. Fluorescence imaging analysis confirms that the red fluorescence in 3D printed devices containing Chlorella is a result of the chlorophyll and its derivatives fluorescence effect. The fluorescent encrypted QR codes are inconspicuous in daylight but become easily discernible under ultraviolet light. In the cases of recognizable QR codes, the ∆Eab* values all exceed 35, and the LC/LB values deviate significantly from 1. This research delves into the fluorescence characteristics of Chlorella and highlights its applicability in 3D printing, specifically within the realm of product anti-counterfeiting, presenting a groundbreaking approach.


Subject(s)
Chlorella , Polyesters , Printing, Three-Dimensional , Polyesters/chemistry , Chlorella/chemistry , Fluorescence
6.
RSC Adv ; 14(2): 1501-1512, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38178810

ABSTRACT

Photocatalysis is widely acknowledged as an efficient and environmentally friendly method for treating dye-contaminated wastewater. However, the utilization of powdered photocatalysts presents significant challenges, including issues related to recyclability and the potential for secondary pollution. Herein, a novel technique based on 3D printing for the synthesizing of iron oxide (Fe2O3) involving chlorella was presented. Initially, chlorella powders were immobilized within acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) substrate plastics using melt extrusion technology. Subsequently, these composite materials were transformed into ABS/TPU/chlorella skeletons (ATCh40), through fused deposition molding (FDM) technology. The integration of Fe2O3 onto the ATCh40 (ATCh40-Fe2O3) skeletons was accomplished by subjecting them to controlled heating in an oil bath. A comprehensive characterization of the synthesized materials confirms the successful growth of Fe2O3 on the surface of 3D skeletons. This strategy effectively addresses the immobilization challenges associated with powdered photocatalysts. In photocatalytic degradation experiments targeting methyl orange (MO), the ATCh40-Fe2O3 skeletons exhibited a remarkable MO removal rate of 91% within 240 min. Under conditions where the pH of MO solution was maintained at 3, and the ATCh40-Fe2O3 skeletons were subjected to a heat treatment in a 150 °C blast drying oven for 2 hours, the degradation rate of MO remained substantial, achieving 90% removal after 6 cycles. In contrast, when the same synthetic procedure was applied to ABS/TPU (AT) skeletons, the resulting product was identified as α-FeOOH. The MO removal rate by the AT-α-FeOOH skeletons was considerably lower, reaching only 49% after 240 min. This research provided a practical approach for the construction of photocatalytic devices through the use of 3D printing technology.

7.
ChemSusChem ; : e202400512, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878218

ABSTRACT

Massive accumulation of postconsumer plastic waste in eco-system has raised growing environmental concerns. Sustainable end-of-life managements of the indispensable plastic are highly demanding and challenging in modern society. To relieve the plastic menace, herein we present a full life cycle sustainable supramolecular bioplastic made from biomass-derived polyelectrolyte (chitosan quaternary ammonium salt, QCS) and natural sodium fatty acid (sodium laurate, SL) through solid-phase molecular self-assembly (SPMSA), by which the QCS-SL complexes, precipitated from mixing the aqueous solutions, self-assemble to form bioplastic film by mildly pressing at room temperature. The QCS-SL bioplastic films display superior hydroplasticity owing to the water-activated molecular rearrangement and electrostatic bond reconstruction, which allows facile self-healing and reprocessing at room temperature to significantly extend the service lifetime of both products and raw materials. With higher water content, the dynamic electrostatic interactions and precipitation-dissolution equilibrium endow the QCS-SL bioplastic films with considerable solubility in water, which is promising to mitigate the plastic accumulation in aquatic environment. Because both QCS and SL are biocompatible and biodegradable, the dissolved QCS-SL films are nontoxic and environmentally friendly. Thus, this novel supramolecular bioplastic is highly sustainable throughout the whole life cycle, which is expected to open a new vista in sustainable plastic materials.

8.
J Colloid Interface Sci ; 659: 439-448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38183810

ABSTRACT

In this study, a Co3O4 catalyst is synthesised using the chitosan-assisted sol-gel method, which simultaneously regulates the grain size, Co valence and surface acidity of the catalyst through a chitosan functional group. The complexation of the free -NH2 complex inhibits particle agglomeration; thus, the average particle size of the catalyst decreases from 82 to 31 nm. Concurrently, Raman spectroscopy, hydrogen temperature-programmed reduction, electron paramagnetic resonance spectroscopy and X-ray photoelectron spectroscopy experiments demonstrate that doping with chitosan N sources effectively modulates Co2+ to promote the formation of oxygen vacancies. In addition, water washing after catalyst preparation can considerably improve the low-temperature (below 250 °C) activity of the catalyst and eliminate the side effects of alkali metal on catalyst activity. Moreover, the presence of Brønsted and Lewis acid sites promotes the adsorption of C8H8. Consequently, CS/Co3O4-W presents the highest catalytic oxidation activity for C8H8 at low temperatures (R250 °C = 8.33 µmol g-1 s-1, WHSV = 120,000 mL hr-1∙g-1). In situ DRIFTS and 18O2 isotope experiments demonstrate that the oxidation of the C8H8 reaction is primarily dominated by the Mars-van Krevelen mechanism. Furthermore, CS/Co3O4-W exhibits superior water resistance (1- and 2- vol% H2O), which has the potential to be implemented in industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL