Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31883794

ABSTRACT

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Subject(s)
Cell Culture Techniques/methods , Glioblastoma/metabolism , Organoids/growth & development , Adult , Aged , Aged, 80 and over , Animals , Biological Specimen Banks , Female , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Mice , Mice, Nude , Middle Aged , Models, Biological , Organoids/metabolism , Reproducibility of Results , Xenograft Model Antitumor Assays/methods
2.
Cell ; 165(5): 1238-1254, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27118425

ABSTRACT

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Subject(s)
Brain/cytology , Cell Culture Techniques , Models, Biological , Organoids , Zika Virus/physiology , Bioreactors , Cell Culture Techniques/economics , Embryo, Mammalian , Embryonic Development , Humans , Induced Pluripotent Stem Cells , Neurogenesis , Neurons/cytology , Organoids/virology , Zika Virus Infection/physiopathology , Zika Virus Infection/virology
3.
Proc Natl Acad Sci U S A ; 120(4): e2209964120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669111

ABSTRACT

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Subject(s)
Ferrets , Hedgehog Proteins , Animals , Female , Humans , Mice , Pregnancy , Central Nervous System/metabolism , Cilia/genetics , Cilia/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mice, Knockout , Signal Transduction
4.
Development ; 146(8)2019 04 16.
Article in English | MEDLINE | ID: mdl-30992274

ABSTRACT

Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.


Subject(s)
Brain/cytology , Organoids/cytology , Animals , Brain/metabolism , Brain/pathology , Humans , Models, Biological , Organoids/metabolism , Organoids/pathology
5.
Development ; 144(6): 952-957, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28292840

ABSTRACT

Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.


Subject(s)
Brain/pathology , Microcephaly/virology , Organoids/pathology , Zika Virus/physiology , Animals , Humans , Microcephaly/pathology , Zika Virus Infection/virology
6.
Nucleic Acids Res ; 44(18): 8610-8620, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27580721

ABSTRACT

Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.


Subject(s)
Cerebral Cortex/cytology , Gene Expression Profiling , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Zika Virus Infection/genetics , Zika Virus/physiology , Cell Death/genetics , Cell Line , DNA Repair/genetics , DNA Replication/genetics , Dengue Virus/physiology , Humans , Signal Transduction/genetics , Species Specificity , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics , Zika Virus Infection/virology
7.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915567

ABSTRACT

The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally specialized areas1,2. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally, through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human cortical development, a critical gap exists due to the loss of spatial context during cell dissociation5,6,7,8. Here, we utilized multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization6,10. Moreover, integrating single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4 neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental atlas of the human brain.

8.
medRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790480

ABSTRACT

Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.

9.
Cell Stem Cell ; 30(2): 137-152.e7, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736289

ABSTRACT

Brain organoids created from human pluripotent stem cells represent a promising approach for brain repair. They acquire many structural features of the brain and raise the possibility of patient-matched repair. Whether these entities can integrate with host brain networks in the context of the injured adult mammalian brain is not well established. Here, we provide structural and functional evidence that human brain organoids successfully integrate with the adult rat visual system after transplantation into large injury cavities in the visual cortex. Virus-based trans-synaptic tracing reveals a polysynaptic pathway between organoid neurons and the host retina and reciprocal connectivity between the graft and other regions of the visual system. Visual stimulation of host animals elicits responses in organoid neurons, including orientation selectivity. These results demonstrate the ability of human brain organoids to adopt sophisticated function after insertion into large injury cavities, suggesting a translational strategy to restore function after cortical damage.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Rats , Animals , Adult , Prosencephalon , Neurons/physiology , Pluripotent Stem Cells/physiology , Retina , Organoids/metabolism , Induced Pluripotent Stem Cells/physiology , Mammals
10.
Cell Rep ; 39(9): 110885, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649379

ABSTRACT

Physiological blood-tissue barriers play a critical role in separating the circulation from immune-privileged sites and denying access to blood-borne viruses. The mechanism of virus restriction by these barriers is poorly understood. We utilize induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (iBMECs) to study virus-blood-brain barrier (BBB) interactions. These iPSC-derived cells faithfully recapitulate a striking difference in in vivo neuroinvasion by two alphavirus isolates and are selectively permissive to neurotropic flaviviruses. A model of cocultured iBMECs and astrocytes exhibits high transendothelial electrical resistance and blocks non-neurotropic flaviviruses from getting across the barrier. We find that iBMECs constitutively express an interferon-induced gene, IFITM1, which preferentially restricts the replication of non-neurotropic flaviviruses. Barrier cells from blood-testis and blood-retinal barriers also constitutively express IFITMs that contribute to the viral resistance. Our application of a renewable human iPSC-based model for studying virus-BBB interactions reveals that intrinsic immunity at the barriers contributes to virus exclusion.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Antiviral Agents , Brain/physiology , Endothelial Cells/physiology , Humans , Induced Pluripotent Stem Cells/physiology , Male
11.
Dev Cell ; 57(20): 2381-2396.e13, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36228617

ABSTRACT

Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.


Subject(s)
Kinesins , Neurons , Humans , Animals , Mice , Kinesins/genetics , Neurons/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Apoptosis , Brain/metabolism
12.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34478631

ABSTRACT

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Subject(s)
Brain/embryology , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Animals , Biological Evolution , Epigenomics , Evolution, Molecular , Ferrets , Humans , Macaca , Mice , Pan troglodytes
13.
Cell Stem Cell ; 26(5): 766-781.e9, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32142682

ABSTRACT

Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/ß-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.


Subject(s)
Induced Pluripotent Stem Cells , Neocortex , Humans , Neurogenesis , Neurons , Organoids
14.
Nat Protoc ; 13(3): 565-580, 2018 03.
Article in English | MEDLINE | ID: mdl-29470464

ABSTRACT

Human brain organoids, 3D self-assembled neural tissues derived from pluripotent stem cells, are important tools for studying human brain development and related disorders. Suspension cultures maintained by spinning bioreactors allow for the growth of large organoids despite the lack of vasculature, but commercially available spinning bioreactors are bulky in size and have low throughput. Here, we describe the procedures for building the miniaturized multiwell spinning bioreactor SpinΩ from 3D-printed parts and commercially available hardware. We also describe how to use SpinΩ to generate forebrain, midbrain and hypothalamus organoids from human induced pluripotent stem cells (hiPSCs). These organoids recapitulate key dynamic features of the developing human brain at the molecular, cellular and structural levels. The reduction in culture volume, increase in throughput and reproducibility achieved using our bioreactor and region-specific differentiation protocols enable quantitative modeling of brain disorders and compound testing. This protocol takes 14-84 d to complete (depending on the type of brain region-specific organoids and desired developmental stages), and organoids can be further maintained over 200 d. Competence with hiPSC culture is required for optimal results.


Subject(s)
Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Organoids/chemistry , Bioreactors , Brain/cytology , Cell Differentiation/physiology , Humans , Hydrodynamics , Induced Pluripotent Stem Cells , Organoids/physiology , Pluripotent Stem Cells , Printing, Three-Dimensional , Reproducibility of Results
15.
Neuron ; 96(5): 1041-1054.e5, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29103808

ABSTRACT

Mutations of DISC1 (disrupted-in-schizophrenia 1) have been associated with major psychiatric disorders. Despite the hundreds of DISC1-binding proteins reported, almost nothing is known about how DISC1 interacts with other proteins structurally to impact human brain development. Here we solved the high-resolution structure of DISC1 C-terminal tail in complex with its binding domain of Ndel1. Mechanistically, DISC1 regulates Ndel1's kinetochore attachment, but not its centrosome localization, during mitosis. Functionally, disrupting DISC1/Ndel1 complex formation prolongs mitotic length and interferes with cell-cycle progression in human cells, and it causes cell-cycle deficits of radial glial cells in the embryonic mouse cortex and human forebrain organoids. We also observed similar deficits in organoids derived from schizophrenia patient induced pluripotent stem cells (iPSCs) with a DISC1 mutation that disrupts its interaction with Ndel1. Our study uncovers a new mechanism of action for DISC1 based on its structure, and it has implications for how genetic insults may contribute to psychiatric disorders.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/physiology , Mitosis/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurogenesis/genetics , Neurons/physiology , Animals , Carrier Proteins/chemistry , Cell Cycle , Female , HeLa Cells , Humans , Immunohistochemistry , Male , Mice , Models, Molecular , Nerve Tissue Proteins/chemistry , Neural Stem Cells , Neurons/pathology , Pluripotent Stem Cells , Pregnancy , Protein Binding , Schizophrenia/pathology
16.
Cell Stem Cell ; 21(3): 349-358.e6, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28826723

ABSTRACT

Zika virus (ZIKV) directly infects neural progenitors and impairs their proliferation. How ZIKV interacts with the host molecular machinery to impact neurogenesis in vivo is not well understood. Here, by systematically introducing individual proteins encoded by ZIKV into the embryonic mouse cortex, we show that expression of ZIKV-NS2A, but not Dengue virus (DENV)-NS2A, leads to reduced proliferation and premature differentiation of radial glial cells and aberrant positioning of newborn neurons. Mechanistically, in vitro mapping of protein-interactomes and biochemical analysis suggest interactions between ZIKA-NS2A and multiple adherens junction complex (AJ) components. Functionally, ZIKV-NS2A, but not DENV-NS2A, destabilizes the AJ complex, resulting in impaired AJ formation and aberrant radial glial fiber scaffolding in the embryonic mouse cortex. Similarly, ZIKA-NS2A, but not DENV-NS2A, reduces radial glial cell proliferation and causes AJ deficits in human forebrain organoids. Together, our results reveal pathogenic mechanisms underlying ZIKV infection in the developing mammalian brain.


Subject(s)
Adherens Junctions/metabolism , Cerebral Cortex/metabolism , Mammals/metabolism , Membrane Proteins/metabolism , Neurogenesis , Proteolysis , Viral Nonstructural Proteins/metabolism , Zika Virus/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cerebral Cortex/embryology , HEK293 Cells , Humans , Mice , Neuroglia/pathology , Protein Binding , Protein Interaction Mapping , Zika Virus Infection/pathology
17.
Cell Res ; 26(7): 753-4, 2016 07.
Article in English | MEDLINE | ID: mdl-27283801

ABSTRACT

The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. Insights from cell and animal models to understand how Zika virus causes severe birth defects may lead to treatments and prevention of these diseases.


Subject(s)
Ependymoglial Cells , Neural Stem Cells , Zika Virus Infection/epidemiology , Zika Virus , Animals , Disease Outbreaks , Mice
18.
Curr Biol ; 26(11): 1473-1479, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27185555

ABSTRACT

To change shape, divide, form junctions, and migrate, cells reorganize their cytoskeletons in response to changing mechanical environments [1-4]. Actin cytoskeletal elements, including myosin II motors and actin crosslinkers, structurally remodel and activate signaling pathways in response to imposed stresses [5-9]. Recent studies demonstrate the importance of force-dependent structural rearrangement of α-catenin in adherens junctions [10] and vinculin's molecular clutch mechanism in focal adhesions [11]. However, the complete landscape of cytoskeletal mechanoresponsive proteins and the mechanisms by which these elements sense and respond to force remain to be elucidated. To find mechanosensitive elements in mammalian cells, we examined protein relocalization in response to controlled external stresses applied to individual cells. Here, we show that non-muscle myosin II, α-actinin, and filamin accumulate to mechanically stressed regions in cells from diverse lineages. Using reaction-diffusion models for force-sensitive binding, we successfully predicted which mammalian α-actinin and filamin paralogs would be mechanoaccumulative. Furthermore, a "Goldilocks zone" must exist for each protein where the actin-binding affinity must be optimal for accumulation. In addition, we leveraged genetic mutants to gain a molecular understanding of the mechanisms of α-actinin and filamin catch-bonding behavior. Two distinct modes of mechanoaccumulation can be observed: a fast, diffusion-based accumulation and a slower, myosin II-dependent cortical flow phase that acts on proteins with specific binding lifetimes. Finally, we uncovered cell-type- and cell-cycle-stage-specific control of the mechanosensation of myosin IIB, but not myosin IIA or IIC. Overall, these mechanoaccumulative mechanisms drive the cell's response to physical perturbation during proper tissue development and disease.


Subject(s)
Actin Cytoskeleton/metabolism , Actinin/metabolism , Filamins/metabolism , Myosin Type II/metabolism , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , NIH 3T3 Cells
19.
Cell Stem Cell ; 18(5): 587-90, 2016 05 05.
Article in English | MEDLINE | ID: mdl-26952870

ABSTRACT

The suspected link between infection by Zika virus (ZIKV), a re-emerging flavivirus, and microcephaly is an urgent global health concern. The direct target cells of ZIKV in the developing human fetus are not clear. Here we show that a strain of the ZIKV, MR766, serially passaged in monkey and mosquito cells efficiently infects human neural progenitor cells (hNPCs) derived from induced pluripotent stem cells. Infected hNPCs further release infectious ZIKV particles. Importantly, ZIKV infection increases cell death and dysregulates cell-cycle progression, resulting in attenuated hNPC growth. Global gene expression analysis of infected hNPCs reveals transcriptional dysregulation, notably of cell-cycle-related pathways. Our results identify hNPCs as a direct ZIKV target. In addition, we establish a tractable experimental model system to investigate the impact and mechanism of ZIKV on human brain development and provide a platform to screen therapeutic compounds.


Subject(s)
Neural Stem Cells/pathology , Neural Stem Cells/virology , Zika Virus Infection/pathology , Zika Virus Infection/virology , Zika Virus/physiology , Cell Cycle , Cell Death , Cell Proliferation , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/virology
20.
Nat Med ; 22(10): 1101-1107, 2016 10.
Article in English | MEDLINE | ID: mdl-27571349

ABSTRACT

In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.


Subject(s)
Brain/drug effects , Caspase 3/drug effects , Caspase Inhibitors/pharmacology , Cell Death/drug effects , Neurons/drug effects , Niclosamide/pharmacology , Pentanoic Acids/pharmacology , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Astrocytes/drug effects , Cell Line , Drug Repositioning , Humans , Induced Pluripotent Stem Cells/drug effects , Microcephaly/prevention & control , Neural Stem Cells/drug effects , Organoids , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL