Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Radiol ; 79(5): e715-e724, 2024 May.
Article in English | MEDLINE | ID: mdl-38342715

ABSTRACT

AIM: To develop a magnetic resonance imaging (MRI)-based radiomics model for the preoperative identification of mesenchymal transition (MT) subtype in high-grade serous ovarian cancer (HGSOC). MATERIALS AND METHODS: One hundred and eighty-nine patients with histopathologically confirmed HGSOC were enrolled retrospectively. Among the included patients, 55 patients were determined as the MT subtype and the remaining 134 were non-MT subtype. After extracting a total of 204 features from T2-weighted imaging (T2WI) and contrast-enhanced (CE)-T1WI images, the Mann-Whitney U-test, Spearman correlation test, and Boruta algorithm were adopted to select the optimal feature set. Three classifiers, including logistic regression (LR), support vector machine (SVM), and random forest (RF), were trained to develop radiomics models. The performance of established models was evaluated from three aspects: discrimination, calibration, and clinical utility. RESULTS: Seven radiomics features relevant to MT subtypes were selected to build the radiomics models. The model based on the RF algorithm showed the best performance in predicting MT subtype, with areas under the curves (AUCs) of 0.866 (95 % confidence interval [CI]: 0.797-0.936) and 0.852 (95 % CI: 0.736-0.967) in the training and testing cohorts, respectively. The calibration curves, supported with Brier scores, indicated very good consistency between observation and prediction. Decision curve analysis (DCA) showed that the RF-based model could provide more net benefit, which suggested favorable utility in clinical application. CONCLUSION: The RF-based radiomics model provided accurate identification of MT from the non-MT subtype and may help facilitate personalised management of HGSOC.


Subject(s)
Ovarian Neoplasms , Radiomics , Humans , Female , Retrospective Studies , Algorithms , Magnetic Resonance Imaging , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL