Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 534(7605): 55-62, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251275

ABSTRACT

Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Genomics , Mutation/genetics , Proteomics , Signal Transduction , Breast Neoplasms/classification , Breast Neoplasms/enzymology , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Class I Phosphatidylinositol 3-Kinases , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mass Spectrometry , Molecular Sequence Annotation , Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/analysis , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Tumor Suppressor Protein p53/genetics , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
2.
Mol Cell Proteomics ; 15(5): 1622-41, 2016 05.
Article in English | MEDLINE | ID: mdl-26912667

ABSTRACT

Profiling post-translational modifications represents an alternative dimension to gene expression data in characterizing cellular processes. Many cellular responses to drugs are mediated by changes in cellular phosphosignaling. We sought to develop a common platform on which phosphosignaling responses could be profiled across thousands of samples, and created a targeted MS assay that profiles a reduced-representation set of phosphopeptides that we show to be strong indicators of responses to chemical perturbagens.To develop the assay, we investigated the coordinate regulation of phosphosites in samples derived from three cell lines treated with 26 different bioactive small molecules. Phosphopeptide analytes were selected from these discovery studies by clustering and picking 1 to 2 proxy members from each cluster. A quantitative, targeted parallel reaction monitoring assay was developed to directly measure 96 reduced-representation probes. Sample processing for proteolytic digestion, protein quantification, peptide desalting, and phosphopeptide enrichment have been fully automated, making possible the simultaneous processing of 96 samples in only 3 days, with a plate phosphopeptide enrichment variance of 12%. This highly reproducible process allowed ∼95% of the reduced-representation phosphopeptide probes to be detected in ∼200 samples.The performance of the assay was evaluated by measuring the probes in new samples generated under treatment conditions from discovery experiments, recapitulating the observations of deeper experiments using a fraction of the analytical effort. We measured these probes in new experiments varying the treatments, cell types, and timepoints to demonstrate generalizability. We demonstrated that the assay is sensitive to disruptions in common signaling pathways (e.g. MAPK, PI3K/mTOR, and CDK). The high-throughput, reduced-representation phosphoproteomics assay provides a platform for the comparison of perturbations across a range of biological conditions, suitable for profiling thousands of samples. We believe the assay will prove highly useful for classification of known and novel drug and genetic mechanisms through comparison of phosphoproteomic signatures.


Subject(s)
Embryonic Stem Cells/metabolism , Phosphoproteins/analysis , Proteomics/methods , Small Molecule Libraries/pharmacology , Animals , Cells, Cultured , Embryonic Stem Cells/cytology , High-Throughput Screening Assays , Humans , MCF-7 Cells , Mice , Phosphoproteins/drug effects , Signal Transduction
3.
Mol Cell Proteomics ; 14(6): 1435-46, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25680957

ABSTRACT

Cell-type specific gene silencing by histone H3 lysine 27 and lysine 9 methyltransferase complexes PRC2 and G9A-GLP is crucial both during development and to maintain cell identity. Although studying their interaction partners has yielded valuable insight into their functions, how these factors are regulated on a network level remains incompletely understood. Here, we present a new approach that combines quantitative interaction proteomics with global chromatin profiling to functionally characterize repressive chromatin modifying protein complexes in embryonic stem cells. We define binding stoichiometries of 9 new and 12 known interaction partners of PRC2 and 10 known and 29 new interaction partners of G9A-GLP, respectively. We demonstrate that PRC2 and G9A-GLP interact physically and share several interaction partners, including the zinc finger proteins ZNF518A and ZNF518B. Using global chromatin profiling by targeted mass spectrometry, we discover that even sub-stoichiometric binding partners such as ZNF518B can positively regulate global H3K9me2 levels. Biochemical analysis reveals that ZNF518B directly interacts with EZH2 and G9A. Our systematic analysis suggests that ZNF518B may mediate the structural association between PRC2 and G9A-GLP histone methyltransferases and additionally regulates the activity of G9A-GLP.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Zinc Fingers/physiology , Animals , Embryonic Stem Cells/metabolism , Mice , Proteomics
4.
Nat Methods ; 10(7): 634-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23749302

ABSTRACT

We report a mass spectrometry-based method for the integrated analysis of protein expression, phosphorylation, ubiquitination and acetylation by serial enrichments of different post-translational modifications (SEPTM) from the same biological sample. This technology enabled quantitative analysis of nearly 8,000 proteins and more than 20,000 phosphorylation, 15,000 ubiquitination and 3,000 acetylation sites per experiment, generating a holistic view of cellular signal transduction pathways as exemplified by analysis of bortezomib-treated human leukemia cells.


Subject(s)
Gene Expression Profiling/methods , Mass Spectrometry/methods , Protein Processing, Post-Translational/physiology , Proteome/metabolism , Systems Integration
5.
Mol Cell Proteomics ; 13(7): 1690-704, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24719451

ABSTRACT

Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.


Subject(s)
Breast Neoplasms/metabolism , Cold Ischemia , Ovarian Neoplasms/metabolism , Proteome/metabolism , Animals , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred NOD , Neoplasm Transplantation , Phosphoproteins/metabolism , Phosphorylation , Proteomics , Transplantation, Heterologous
6.
Mol Cell Proteomics ; 12(3): 825-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23266961

ABSTRACT

Detection of endogenous ubiquitination sites by mass spectrometry has dramatically improved with the commercialization of anti-di-glycine remnant (K-ε-GG) antibodies. Here, we describe a number of improvements to the K-ε-GG enrichment workflow, including optimized antibody and peptide input requirements, antibody cross-linking, and improved off-line fractionation prior to enrichment. This refined and practical workflow enables routine identification and quantification of ∼20,000 distinct endogenous ubiquitination sites in a single SILAC experiment using moderate amounts of protein input.


Subject(s)
Proteome/analysis , Proteomics/methods , Ubiquitination , Amino Acids/metabolism , Antibodies/chemistry , Antibodies/immunology , Binding Sites , Chromatography, Liquid/methods , Cross-Linking Reagents/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Glycylglycine/immunology , Humans , Isotope Labeling/methods , Jurkat Cells , Leupeptins/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteome/chemistry , Proteome/metabolism , Reproducibility of Results , Tandem Mass Spectrometry/methods , Ubiquitinated Proteins/analysis , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/metabolism
7.
Mil Med ; 187(11-12): e1480-e1482, 2022 10 29.
Article in English | MEDLINE | ID: mdl-34570195

ABSTRACT

Coronavirus disease (COVID) toes are pernio-like skin lesions associated with severe acute respiratory syndrome coronavirus 2. We observed pernio-like skin findings presenting after a Pfizer BioNTech vaccine, which significantly worsened after an infusion of rituximab. This suggests that the mechanism for COVID toes is interferon activation. Military providers may avoid unnecessary referrals for this self-limiting condition by anticipating this adverse effect.


Subject(s)
BNT162 Vaccine , COVID-19 , Chilblains , Interferons , Rituximab , Humans , Chilblains/pathology , COVID-19/prevention & control , Rituximab/adverse effects , Toes/pathology , Vaccination/adverse effects , BNT162 Vaccine/adverse effects
8.
Nat Commun ; 8: 14864, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28348404

ABSTRACT

Recent advances in mass spectrometry (MS) have enabled extensive analysis of cancer proteomes. Here, we employed quantitative proteomics to profile protein expression across 24 breast cancer patient-derived xenograft (PDX) models. Integrated proteogenomic analysis shows positive correlation between expression measurements from transcriptomic and proteomic analyses; further, gene expression-based intrinsic subtypes are largely re-capitulated using non-stromal protein markers. Proteogenomic analysis also validates a number of predicted genomic targets in multiple receptor tyrosine kinases. However, several protein/phosphoprotein events such as overexpression of AKT proteins and ARAF, BRAF, HSP90AB1 phosphosites are not readily explainable by genomic analysis, suggesting that druggable translational and/or post-translational regulatory events may be uniquely diagnosed by MS. Drug treatment experiments targeting HER2 and components of the PI3K pathway supported proteogenomic response predictions in seven xenograft models. Our study demonstrates that MS-based proteomics can identify therapeutic targets and highlights the potential of PDX drug response evaluation to annotate MS-based pathway activities.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/therapy , Molecular Targeted Therapy , Proteogenomics , Xenograft Model Antitumor Assays , Animals , Female , Humans , Mice , Phosphorylation , Signal Transduction , Transcriptome/genetics
9.
Neuropeptides ; 46(4): 167-72, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22672888

ABSTRACT

Thimet oligopeptidase (TOP) and prolyl endopeptidase (PEP) are neuropeptidases involved in the hydrolysis of gonadotropin-releasing hormone, a key component of the hypothalamic-pituitary-gonadal axis. GnRH is regulated in part by feedback from steroid hormones such as estradiol. Previously, we demonstrated that TOP levels are down-regulated by estradiol in reproductively-relevant regions of the female rodent brain. The present study supports these findings by showing that TOP enzyme activity, as well as protein levels, in the ventromedial hypothalamic nucleus of female mice is controlled by estradiol. We further demonstrate that PEP levels in this same brain region are down-regulated by estradiol in parallel with those of TOP. These findings provide evidence that these neuropeptidases are part of the fine control of hormone levels in the HPG axis.


Subject(s)
Estradiol/pharmacology , Hypothalamus/enzymology , Metalloendopeptidases/metabolism , Serine Endopeptidases/metabolism , Ventromedial Hypothalamic Nucleus/enzymology , Animals , Down-Regulation , Enzyme Activation/drug effects , Female , Gonadotropin-Releasing Hormone/metabolism , Mice , Mice, Inbred C57BL , Prolyl Oligopeptidases , Steroids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL