Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Toxicol Appl Pharmacol ; 485: 116916, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537874

ABSTRACT

This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 µM) and subsequently treated with 5 µM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Isothiocyanates , Lung Neoplasms , Neoplasm Invasiveness , Sulfoxides , Humans , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Cell Movement/drug effects , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Anticarcinogenic Agents/pharmacology , NF-kappa B/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
2.
J Cell Mol Med ; 24(2): 1451-1459, 2020 01.
Article in English | MEDLINE | ID: mdl-31769187

ABSTRACT

The beneficial function of gastrodin towards many inflammatory diseases has been identified. This study designed to see the influence of gastrodin in a cell model of chronic obstructive pulmonary disease (COPD). MRC-5 cells were treated by LPS, before which gastrodin was administrated. The effects of gastrodin were evaluated by conducting CCK-8, FITC-PI double staining, Western blot, qRT-PCR and ELISA. Besides this, the downstream effector and signalling were studied to decode how gastrodin exerted its function. And dual-luciferase assay was used to detect the targeting link between miR-103 and lipoprotein receptor-related protein 1 (LRP1). LPS induced apoptosis and the release of MCP-1, IL-6 and TNF-α in MRC-5 cells. Pre-treating MRC-5 cells with gastrodin attenuated LPS-induced cell damage. Meanwhile, p38/JNK and NF-κB pathways induced by LPS were repressed by gastrodin. miR-103 expression was elevated by gastrodin. Further, the protective functions of gastrodin were attenuated by miR-103 silencing. And LRP1 was a target of miR-103 and negatively regulated by miR-103. The in vitro data illustrated the protective function of gastrodin in LPS-injured MRC-5 cells. Gastrodin exerted its function possibly by up-regulating miR-103 and modulating p38/JNK and NF-κB pathways.

3.
Hum Cell ; 34(3): 952-964, 2021 May.
Article in English | MEDLINE | ID: mdl-33728585

ABSTRACT

Long noncoding RNAs (lncRNAs) have gained much attention in the past few years. Long intergenic non-protein coding RNA 520 (LINC00520) was one of the newly discovered lncRNA which has been demonstrated to be dysregulated in several cancers. So far, the function and mechanism of LINC00520 in non-small cell lung cancer (NSCLC) are unclear. In this paper, our group first showed that LINC00520 level was elevated in non-small cell lung cancer (NSCLC) tissue and cells. In addition, SP1 could bind directly to the promoter region of LINC00520 and thus promote its transcription. Increased LINC00520 was distinctly correlated with advanced tumor stage and shorter survival time in NSCLC patients. Further functional investigations provided evidences that forced down regulation of LINC00520 inhibited NSCLC cell proliferation, invasion, metastasis and EMT, while contributing to cells apoptosis. Mechanistically, we found that LINC00520 serving as a competing endogenous RNA to be involved in the modulation of miR-577 expressions, and thus affected the expression of CCNE2 which was a target gene of miR-577. Moreover, in NSCLC cells with si-LINC00520, up regulation of CCNE2 led to an increase of cell growth and invasion. Taken together, LINC00520 displayed its tumor-promotive roles through modulating the miR-577/CCNE2 axis, highlighting a potential therapeutic strategy for NSCLC patients.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cyclins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Gene Expression/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Sp1 Transcription Factor/physiology , Cell Proliferation/genetics , Humans , Neoplasm Invasiveness/genetics , Prognosis , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , Transcription, Genetic/genetics , Tumor Cells, Cultured
4.
Transl Oncol ; 13(1): 79-85, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31805518

ABSTRACT

T-cell factor 4 (TCF-4) is determined to play a crucial role in Wnt/ß-catenin signaling pathway activation. The mutations and alternative splice isoforms of TCF-4 can cause cancers and other diseases. The high-mobility group (HMG) box domain of TCF-4 contributes to interacting with DNA motif for transcriptional regulation. However, the impact of the mutations within HMG box of TCF-4 on the genomic binding pattern is poorly investigated. Herein, we generated non-small cell lung cancer (NSCLC) cell line A549 with stably overexpressed TCF-4 with HMG box hot spot mutation (10th exon partial deletion), and conducted TCF-4 and ß-catenin chromatin immunoprecipitation sequence to explore the differential genomic binding patterns. Our results revealed that TCF-4 lost 19365 but gained 1724 peaks, and ß-catenin lost 4035 but gained 5287 peaks upon mutant TCF-4 compared with the wild type (log2FC > 1 or < -1, FDR<0.01). The transcriptional levels of the genes associated with these differential peaks such as H3F3C, KRT1, KRT14, MMp1, and MMP15 were all found to strongly change responding to TCF-4 binding (P < 0.05). Furthermore, A549 cells with TCF-4 mutation displayed a more compromising tumor characterization on cell proliferation and invasion. Our data determined the important role of TCF-4 in gene transcription controlling and provided the gain function evidence of TCF-4 caused by the TCF-4 mutation in NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL