ABSTRACT
Salvia leucantha is a perennial herb of the genus Salvia in the family Labiatae, which has a wide range of biological activities, mainly including inhibition of acetylcholinesterase, antibacterial, and anti-inflammatory activity. To explore the protective effects and mechanism of action of S. leucantha on Alzheimer's disease (AD), the anti-AD activity of SLE (extracts of S. leucantha) was determined by using a transgenic Caenorhabditis elegans (C. elegans) model (CL4176). Analyses included paralysis assay, phenotypic experiments, transcriptome sequencing, RNA interference (RNAi), heat shock assays, and gas chromatography-mass spectrometry (GC-MS). SLPE (S. leucantha petroleum ether extract) could significantly delay CL4176 paralysis and extend the longevity of C. elegans N2 without harmful effects. A total of 927 genes were significantly changed by SLPE treatment in C. elegans, mainly involving longevity regulatory pathways-nematodes, drug metabolism-cytochrome P450, and glutathione metabolic pathways. RNAi showed that SLPE exerted its anti-AD activity through up-regulation of the gene gst-5; the most abundant compound in SLPE analyzed by GC-MS was 2,4-Di-tert-butylphenol (2,4-DTBP), and the compound delayed nematode paralysis. The present study suggests that active components in S. leucantha may serve as new-type anti-AD candidates and provide some insights into their biological functions.
Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Plant Extracts , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Longevity/genetics , Longevity/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , RNA Interference , Salvia/chemistry , Up-Regulation/drug effectsABSTRACT
Anthocyanin is a natural antioxidant agent extracted from the fruits of Sambucus canadensis, which has been considered to have potential anti-aging effects. Cell senescence is the primary cause of aging and related diseases. Recently, research on the development of compounds for eliminating senescent cells or damaged organs have shown prospects. The compounds which promote the clearing of senescent cells are called "senolytics". Though anthocyanin is considered to have potential anti-aging effects owing to its anti-inflammatory and antioxidant activities, the mechanism of the elimination of senescent cells remains unclear. In this study, we prepared anthocyanins extracted from the fruits of Sambucus canadensis and evaluated their anti-aging effects in vivo and in vitro. We found that anthocyanin could significantly reduce cell senescence and aging of the lens by inhibiting the activity of the PI3K/AKT/mTOR signaling pathway, consequently promoting the apoptosis of senescent cells, increasing the autophagic and mitophagic flux, and enhancing the renewal of mitochondria and the cell to maintain cellular homeostasis, leading to attenuating aging. Therefore, our study provided a basis for anthocyanin to be used as new "senolytics" in anti-aging.
Subject(s)
Anthocyanins , Sambucus , Anthocyanins/pharmacology , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases , Cellular Senescence , Oxidative StressABSTRACT
Aflatoxins, including aflatoxin B1, B2, G1, G2, M1, and M2, are one of the major types of mycotoxins that endangers food safety, human health, and contribute to the immeasurable loss of food and agricultural production in the world yearly. In addition, aflatoxin B1 (AFB1) mainly produced by Aspergilus sp. is the most potent of these compounds and has been well documented to cause the development of hepatocellular carcinoma in humans and animals. This paper reviewed the detoxification and degradation of AFB1, including analysis and summary of the major technologies in physics, chemistry, and biology in recent years. The chemical structure and toxicity of the transformed products, and the degradation mechanisms of AFB1 are overviewed and discussed in this presented review. In addition to the traditional techniques, we also provide a prospective study on the use of emerging detoxification methods such as natural products and photocatalysis. The purpose of this work is to provide reference for AFB1 control and detoxification, and to promote the development of follow-up research.
ABSTRACT
Infundibulicybe trachyspora is described as a new species from northeastern China. The species is characterized by clitocyboid to omphalioid habit, carneous, greyish-yellow to brownish pileus, brown to dark reddish-brown, longitudinally fibrillose-striate stipe, non-amyloid, non-smooth spores, the absence of cystidia and the presence of clamp connections. A comprehensive description of the species is provided together with photo-illustrations and comparisons with phenotypically similar and phylogenetically related species. The nuclear ribosomal internal transcribed spacer (ITS) region and the nuclear, large subunit rDNA (nrLSU) region of the new species was sequenced and analyzed. The phylogenetic analysis supported the novelty of the species and its placement within the genus. Furthermore, a discussion on the proposal to establish a new section is made, and a key is provided for the Infundibulicybe species reported from China.
Subject(s)
Agaricales , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Phylogeny , Sequence Analysis, DNAABSTRACT
Hyperosmolality-gated calcium-permeable channels (OSCA) are characterized as an osmosensor in plants; they are able to recognize and respond to exogenous and endogenous osmotic changes, and play a vital role in plant growth and adaptability to environmental stress. To explore the potential biological functions of OSCAs in maize, we performed a bioinformatics and expression analysis of the ZmOSCA gene family. Using bioinformatics methods, we identified twelve OSCA genes from the genome database of maize. According to their sequence composition and phylogenetic relationship, the maize OSCA family was classified into four groups (â , â ¡, â ¢, and â £). Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members. We modeled the calcium binding sites of four OSCA families using the autodocking technique. The expression profiles of ZmOSCA genes were analyzed in different tissues and under diverse abiotic stresses such as drought, salt, high temperature, and chilling using quantitative real-time PCR (qRT-PCR). We found that the expression of twelve ZmOSCA genes is variant in different tissues of maize. Furthermore, abiotic stresses such as drought, salt, high temperature, and chilling differentially induced the expression of twelve ZmOSCA genes. We chose ZmOSCA2.2 and ZmOSCA2.3, which responded most strongly to temperature stress, for prediction of protein interactions. We modeled the calcium binding sites of four OSCA families using autodocking tools, obtaining a number of new results. These results are helpful in understanding the function of the plant OSCA gene family for study of the molecular mechanism of plant osmotic stress and response, as well as exploration of the interaction between osmotic stress, high-temperature stress, and low-temperature stress signal transduction mechanisms. As such, they can provide a theoretical basis for crop breeding.
Subject(s)
Gene Expression Regulation, Plant , Zea mays , Zea mays/metabolism , Phylogeny , Plant Proteins/metabolism , Temperature , Calcium/metabolism , Gene Expression Profiling , Droughts , Stress, Physiological/genetics , Sodium Chloride/pharmacologyABSTRACT
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, etâ al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.
Subject(s)
Biological Products/chemistry , Insecticides/chemistry , Animals , Biological Products/chemical synthesis , Insecticides/chemical synthesis , Molecular StructureABSTRACT
Eight natural biphenyl-type phytoalexins exhibiting antifungal effect were isolated from the leaves of Sorbus pohuashanensis, which invaded by Alternaria tenuissi, and their growth inhibition rate towards A. tenuissi were 50.3 %, 54.0 %, 66.4 %, 58.8 %, 48.5 %, 51.0 %, 33.3 %, and 37.0 %, respectively. In vivo activity assay verified the protective effect of these natural biphenyls on tobacco leaves. The observation of mycelial morphology revealed that these compounds possessed adverse effects on mycelial growth of A. tenuissi. Subsequently, the most potent active compounds, 3',4',5'-trimethoxy[1,1'-biphenyl]-4-ol (3) and 3,4,4',5-tetramethoxy-1,1'-biphenyl (4), were conducted to the further antifungal evaluation and showed significant activity against the other four crop pathogens, Fusarium graminearum, Helminthosporium maydis, Sclerotinia sclerotiorum, and Exserohilum turcicum. Further, the structure-activity relationships and biosynthesis of these compounds were speculated in this work.
Subject(s)
Alternaria/drug effects , Antifungal Agents/pharmacology , Biphenyl Compounds/pharmacology , Sorbus/chemistry , Alternaria/growth & development , Alternaria/pathogenicity , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Ascomycota/drug effects , Ascomycota/pathogenicity , Biphenyl Compounds/chemistry , Biphenyl Compounds/isolation & purification , Bipolaris/drug effects , Bipolaris/pathogenicity , Fusarium/drug effects , Fusarium/pathogenicity , Microbial Sensitivity Tests , Molecular Structure , Plant Extracts , Plant Leaves/chemistryABSTRACT
Biotransformation of ent-kaur-16-en-19-oic acid using fungus Cunninghamella echinulata resulted in two novel hydroxylated metabolites together with five known compounds. Their structures were elucidated by means of extensive NMR and HR-ESI-MS data analysis. The eight compounds were measured for their cytotoxicity against the human breast carcinoma (MCF-7) and human hepatoblastoma (HepG-2) cell lines. Seven compounds showed no cytotoxicity to the two cell lines. One compound displayed moderate cytotoxicity against HepG-2 and MCF-7 with the IC50 values of 12.6 and 27.1â µM, respectively.
Subject(s)
Cunninghamella/metabolism , Cell Survival/drug effects , Cunninghamella/chemistry , Diterpenes/chemistry , Diterpenes/metabolism , Hep G2 Cells , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Molecular Conformation , Spectrometry, Mass, Electrospray IonizationABSTRACT
A new azaphilone, chaephilone E, eight azaphilone derivatives, and three chaetoglobosins were isolated from endophytic fungi Chaetomium globosum. The structures of the compounds were elucidated by 1D and 2D NMR as well as HR-ESI-MS data, and the absolute configuration of chaephilone E was established on the basis of electronic circular dichroism and NOESY spectrum. The activity of chaephilone E was evaluated via the cytotoxic assay (human hepatoma cell lines HepG-2) and brine shrimp (Artemia salina) bioassay.
Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzopyrans/pharmacology , Chaetomium/chemistry , Pigments, Biological/pharmacology , Polygonatum/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Artemia , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Cell Proliferation/drug effects , Chaetomium/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Structure , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Structure-Activity RelationshipABSTRACT
Three new inositol angelate compounds (1-3) and two new tirucallane-type alkaloids (4 and 5) were isolated from the Amoora dasyclada, and their structures were established mainly by means of combination of 1D and 2D nuclear magnetic resonance and HR-ESI-MS. Based on cytotoxicity testing, compounds 4 and 5 exhibited significant cytotoxic activity against human cancer cell line HepG2 with IC50 value at 8.4 and 13.2 µM. In addition, compounds 4 and 5 also showed remarkable growth inhibitory activity to Artemia salina larvae.
Subject(s)
Aglaia/chemistry , Alkaloids/chemistry , Cell Proliferation/drug effects , Inositol/chemistry , Alkaloids/pharmacology , Hep G2 Cells , Humans , Inositol/analogs & derivatives , Inositol/pharmacology , Neoplasms/drug therapy , Triterpenes/chemistry , Triterpenes/pharmacologyABSTRACT
Essential oils from aerial parts of the herbs Peganum harmala and Nepeta cataria, and leaves of the tree Phellodendron amurense were analyzed by GC-FID and GC-MS, and their larvicidal activities were assayed on the early fourth instar larvae of Aedes aegypti. The major constituents of the oils were limonene (14.5%) and thymol (11.5%) in P. harmala, thymol (46.5%), 4aα,7α,7aß-nepetalactone (18.3%) and 4aα,7ß,7aα-neptalactone (19.7%) in N. cataria, eugenol (14.5%) andγ-eudesmol (9.5%) in P. amurense.The oil of N. cataria had a strong larvicidal activity (LC50 < 50 µg/mL; LC90 < 86.8 µg/mL) on A. aegypti while the remaining oils showed a moderated killing effect. The larvicidal activity of N. cataria oil was associated to the contents of 1,8-cineol, camphor, 4aα,7α,7aß-Nepetalactone, 4aα,7ß,7aα-Nepetalactone and thymol. Our results indicate that the oil of N. catariadeserves to be used as a source of larvicidal agents against A. aegypti.
ABSTRACT
The ZmCBF3 gene is a member of AP2/ERF transcription factor family, which is a large family of plant-specific transcription factors that share a well-conserved DNA-binding domain. To understand the regulatory mechanism of ZmCBF3 gene expression, we isolated and characterized the ZmCBF3 promoter (PZmCBF3). Three deletion fragments of PZmCBF3 were generated, C1-C3, from the translation start codon at position -1079, -638, and -234, and fused to the GUS reporter gene. Each deletion construct was analyzed by Agrobacterium-mediated stable transformation and expression in Arabidopsis thaliana. GUS expression assays indicated that the PZmCBF3 exhibited root-specific expression activity. A 234-bp fragment upstream of the ZmCBF3 gene conferred a high level of GUS activity in Arabidopsis. Some cis-acting elements involved in the down-regulation of gene expression were detected in the promoter, encompassing positions -1079 to -234. PZmCBF3 was activated by cold stress. The MYCCONSENSUSAT elements (CANNTG) were responsible for the ability of PZmCBF3 to respond to cold stress. The results of the present study suggest that PZmCBF3 might play a role in cold tolerance in maize.
Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Promoter Regions, Genetic , Transcription Factors/genetics , Zea mays/metabolism , Arabidopsis/metabolism , Cold Temperature , Organ Specificity , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Sequence Analysis, DNA , Sequence Deletion , Stress, Physiological , Transcription Factors/metabolism , Up-Regulation , Zea mays/genetics , Zea mays/growth & developmentABSTRACT
Mycotoxins are representative contaminants causing food losses and food safety problems worldwide. Thymol can effectively inhibit pathogen infestation and aflatoxin accumulation during grain storage, but high volatility limits its application. Here, a thymol-betaine co-crystal system was synthesized through grinding-induced self-assembly. The THY-TMG co-crystal exhibited excellent thermal stability with melting point of 91.2 °C owing to abundant intermolecular interactions. Remarkably, after 15 days at 30 °C, the release rate of thymol from co-crystal was only 55%, far surpassing that of pure thymol. Notably, the co-crystal demonstrated the ability to bind H2O in the environment while controlling the release of thymol, essentially acting as a desiccant. Moreover, the co-crystals effectively inhibited the growth of Aspergillus flavus and the biosynthesis of aflatoxin B1. In practical terms, the THY-TMG co-crystal was successful in preventing AFB1 contamination and nutrients loss in peanuts, thereby prolonging their shelf-life under conditions of 28 °C and 70% RH.
Subject(s)
Aspergillus flavus , Betaine , Thymol , Thymol/chemistry , Thymol/pharmacology , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Aspergillus flavus/chemistry , Betaine/chemistry , Betaine/pharmacology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Delayed-Action Preparations/chemistry , Arachis/chemistry , Arachis/microbiology , Crystallization , Aflatoxins/chemistry , Aflatoxin B1/chemistryABSTRACT
Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.
Subject(s)
Botrytis , Cellulose , Fungal Proteins , Gene Expression Regulation, Fungal , Plant Diseases , Transcription Factors , Botrytis/genetics , Botrytis/pathogenicity , Botrytis/metabolism , Cellulose/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolismABSTRACT
Botrytis cinerea (B. cinerea) and Colletotrichum gloeosporioides (C. gloeosporioides) were isolated from the decaying strawberry tissue. The antifungal properties of Monarda didyma essential oil (MEO) and its nanoemulsion were confirmed, demonstrating complete inhibition of the pathogens at concentrations of 0.45 µL/mL (0.37 mg/mL) and 10 µL/mL, respectively. Thymol, a primary component of MEO, was determined as an antimicrobial agent with IC50 values of 34.51 (B. cinerea) and 53.40 (C. gloeosporioides) µg/mL. Hippophae rhamnoides oil (HEO) was confirmed as a potent antioxidant, leading to the development of a thymol-HEO-chitosan film designed to act as an antistaling agent. The disease index and weight loss rate can be reduced by 90 and 60%, respectively, with nutrients also being well-preserved, offering an innovative approach to preservative development. Studies on the antifungal mechanism revealed that thymol could bind to FKS1 to disrupt the cell wall, causing the collapse of mitochondrial membrane potential and a burst of reactive oxygen species.
Subject(s)
Botrytis , Colletotrichum , Food Preservation , Fragaria , Fragaria/chemistry , Fragaria/microbiology , Botrytis/drug effects , Botrytis/growth & development , Colletotrichum/drug effects , Food Preservation/methods , Apoptosis/drug effects , Plant Diseases/microbiology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fruit/chemistry , Fruit/microbiology , Thymol/pharmacology , Thymol/chemistry , Surface Properties , Chitosan/chemistry , Chitosan/pharmacologyABSTRACT
Three novel azaphilone alkaloids, namely chaetomugilides A-C (1-3), together with three related compounds (4-6) were isolated from the methanol extract of Chaetomium globosum TY1, an endophytic fungus isolated from Ginkgo biloba. Their structures were elucidated on the basis of extensive 1D and 2D NMR as well as HRESI-MS spectroscopic data analysis. The isolated compounds exhibited highly cytotoxic activities against human cancer cell line HePG2 with the IC50 values range from 1.7 to 53.4µM.
Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Chaetomium/chemistry , Pigments, Biological/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Structure , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Structure-Activity RelationshipABSTRACT
The fungal endophyte Chaetomium globosum No.04 was isolated from the medicinal plant Ginkgo biloba. The crude extract of the fungus fermentation were active in the agar-diffusion tests against the phytopathogenic fungi Rhizopus stolonifer and Coniothyrium diplodiella. Further bioassay-guided chemical investigation led to the isolation and purification of six alkaloids and three non-targeted compounds from 50 L fermentation of this endophytic fungus and their structures were elucidated as chaetoglobosin A, C, D, E, G, R (1-6), ergosterol, allantoin and uracil, by means of spectroscopic analysis. Compounds 1-6 showed significant growth inhibitory activity against R. stolonifer and C. diplodiella at a concentration of 20 µg/disc. We present here, for the first time, the potent antifungal activity of chaetoglobosins from endophytic fungi against two important phytopathogenic fungi R. stolonifer and C. diplodiella.
ABSTRACT
Phytopathogen, pest, weed, and nutrient deficiency cause severe losses to global crop yields every year. As the core engine, agrochemicals drive the continuous development of modern agriculture to meet the demand for agricultural productivity and increase the environmental burden due to inefficient use. With new advances in nanotechnology, introducing nanomaterials into agriculture to realize agrochemical accurate and targeted delivery has brought new opportunities to support the sustainable development of green agriculture. Metal-Organic frameworks (MOFs), which weave metal ions/clusters and organic ligands into porous frameworks, have exhibited significant advantages in constructing biotic/abiotic stimuli-responsive nanoplatforms for controlled agrochemical delivery. This review emphasizes the recent developments of MOF-based nanoplatforms for crop protection, including phytopathogen, pest, and weed control, and crop growth promotion, including fertilizer/plant hormone delivery. Finally, forward-looking perspectives and challenges on MOF-based nanoplatforms for future applications in crop protection and growth promotion are also discussed.
ABSTRACT
The reduction in blueberry harvest due to pathogen infection was reported to reach 80%. Essential oil (EO) can provide a new way to preserve blueberry. Here, in search for plants volatiles with preservation ability, a novel device was designed for the screening of aromatic plants led to the discovery of hit plant Monarda didyma L. Consequently, antifungi activity of M. didyma EO (MEO) and its nano-emulsion (MNE) were tested. 2 species of pathogenic fungi were isolated from blueberries, namely Alternaria sp. and Colletotrichum sp. were used as the target strains. In the in vitro activity test, the pathogenic were completely inhibited when the EO was 4 µL or 1.0 µL/mL. Compared with EO, MNE exhibited superior antimicrobial activity. Moreover, MNE can cause serious morphological changes and result in a decrease in the rot and weightlessness rate of blueberry. Hence, NME represents a promising agent for the preservation of postharvest blueberry.
Subject(s)
Blueberry Plants , Monarda , Oils, Volatile , Oils, Volatile/pharmacology , AlternariaABSTRACT
A cDNA encoding an O-methyltransferase (namely FGCOMT1) was identified from the medicinal plant Trigonella foenum-graecum L. The FGCOMT1 enzyme is a functional caffeic acid O-methyltransferase (COMT) and is localized in the cytosol. Kinetic analysis indicated that FGCOMT1 protein exhibited the highest catalyzing efficiency towards 5-hydroxy ferulic acid and caffeic acid as substrates, but did not possess the abilities to methylate either quercetin or tricetin in vitro. Furthermore, transformation of Arabidopsis loss-of-function Atomt1 mutant with a FGCOMT1 cDNA partially complements accumulation of sinapoyl derivatives but did not function to produce the major methylated flavonol isorhamnetin in seeds. The results from this study indicated that FGCOMT1 is a COMT with substrate preference to monomeric lignin precursors but is not involved in the flavonoid methylation in T. foenum-graecum L.