Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Comput Biol Chem ; 110: 108072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636391

ABSTRACT

The methylation and demethylation of lysine and arginine side chains are fundamental processes in gene regulation and disease development. Histone lysine methylation, controlled by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), plays a vital role in maintaining cellular homeostasis and has been implicated in diseases such as cancer and aging. This study focuses on two members of the lysine demethylase (KDM) family, KDM4E and KDM6B, which are significant in gene regulation and disease pathogenesis. KDM4E demonstrates selectivity for gene regulation, particularly concerning cancer, while KDM6B is implicated in inflammation and cancer. The study utilizes specific inhibitors, DA-24905 and GSK-J1, showcasing their exceptional selectivity for KDM4E and KDM6B, respectively. Employing an array of computational simulations, including sequence alignment, molecular docking, dynamics simulations, and free energy calculations, we conclude that although the binding cavities of KDM4E and KDM6B has high similarity, there are still some different crucial amino acid residues, indicating diverse binding forms between protein and ligands. Various interaction predominates when proteins are bound to different ligands, which also has significant effect on selective inhibition. These findings provide insights into potential therapeutic strategies for diseases by selectively targeting these KDM members.


Subject(s)
Enzyme Inhibitors , Jumonji Domain-Containing Histone Demethylases , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/chemistry , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Dynamics Simulation , Drug Discovery , Molecular Docking Simulation , Molecular Structure , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Histone Demethylases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL