Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124263, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593539

ABSTRACT

Fluorescence analysis has attracted much attention due to its rapidity and sensitivity. The present work describes a novel fluorescence detection method for acid phosphatase (ACP) on the basis of inner-filter effect (IFE), where MnO2 nanosheets (MnO2 NSs) and vitamin B2 (VB2) are served as absorbers and fluorophores, respectively. In the absence of ACP, the absorption band of MnO2 NSs overlaps well with the excitation band of VB2, resulting in effective IFE and inhibition of VB2 fluorescence. In the presence of ACP, 2-phospho-L-ascorbic acid trisodium salt (AAP) is hydrolyzed to generate ascorbic acid (AA), which efficiently trigger the reduction of MnO2 NSs into Mn2+ ions, causing the weakening of the MnO2 NSs absorption band and the recovery of VB2 fluorescence. Further investigation indicates that the fluorescence recovery degree of VB2 increases with the increase of ACP concentration. Under selected experimental conditions, the proposed method can achieve sensitive detection of ACP in the ranges of 0.5-4.0 mU/mL and 4.0-15 mU/mL along with a limit of detection (LOD) as low as 0.14 mU/mL. Finally, this method was successfully applied for the detection of ACP in human serum samples with satisfactory recoveries in the range of 95.0 %-108 %.


Subject(s)
Acid Phosphatase , Limit of Detection , Manganese Compounds , Nanostructures , Oxides , Spectrometry, Fluorescence , Manganese Compounds/chemistry , Oxides/chemistry , Spectrometry, Fluorescence/methods , Humans , Acid Phosphatase/blood , Acid Phosphatase/metabolism , Acid Phosphatase/analysis , Nanostructures/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology
2.
Anal Chim Acta ; 1301: 342464, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553122

ABSTRACT

BACKGROUND: Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS: Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 µg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 µg mL-1. SIGNIFICANCE: Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.


Subject(s)
Biosensing Techniques , Pesticides , Piperidines , Humans , Pesticides/analysis , Acetylcholine/chemistry , Acetylcholinesterase/chemistry , Organophosphorus Compounds/analysis , Hydrogen Peroxide/chemistry , Catalysis , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL