Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 32(5-6): 341-346, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29563185

ABSTRACT

The mixed-lineage leukemia (MLL)-AF10 fusion oncoprotein recruits DOT1L to the homeobox A (HOXA) gene cluster through its octapeptide motif leucine zipper (OM-LZ), thereby inducing and maintaining the MLL-AF10-associated leukemogenesis. However, the recognition mechanism between DOT1L and MLL-AF10 is unclear. Here, we present the crystal structures of both apo AF10OM-LZ and its complex with the coiled-coil domain of DOT1L. Disruption of the DOT1L-AF10 interface abrogates MLL-AF10-associated leukemic transformation. We further show that zinc stabilizes the DOT1L-AF10 complex and may be involved in the regulation of the HOXA gene expression. Our studies may also pave the way for the rational design of therapeutic drugs against MLL-rearranged leukemia.


Subject(s)
Cell Transformation, Neoplastic/pathology , Methyltransferases , Models, Molecular , Myeloid-Lymphoid Leukemia Protein , Transcription Factors , Crystallization , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase , Homeodomain Proteins/genetics , Humans , Methyltransferases/chemistry , Methyltransferases/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding , Protein Domains , Protein Structure, Quaternary , Structure-Activity Relationship , Transcription Factors/chemistry , Transcription Factors/metabolism , Zinc/chemistry
2.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34782742

ABSTRACT

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Subject(s)
Cell Nucleolus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Molecular Probes/chemistry , Protein Domains , Repressor Proteins/metabolism , Methylation , Multiple Myeloma/metabolism , Nucleosomes/metabolism
3.
Article in English | MEDLINE | ID: mdl-38643424

ABSTRACT

PURPOSE: To evaluate and compare the effect of decentration and tilt on the optical quality of monofocal and trifocal intraocular lenses (IOL). METHODS: Optical quality of a monofocal IOL (AcrySof IQ SN60WF; Alcon Laboratories, Inc., USA) and a trifocal IOL (AcrySof IQ PanOptix; Alcon Laboratories, Inc., USA) was assessed using an in vitro optical bench (OptiSpheric IOL R&D; Trioptics GmbH, Germany). At apertures of 3.0 mm and 4.5 mm, modulation transfer function (MTF) at spatial frequency of 50 lp/mm, MTF curve and the United States Air Force (USAF) resolution test chart of the two IOLs were measured and compared at their focus with different degrees of decentration and tilt. Optical quality at infinity, 60 cm and 40 cm and the through-focus MTF curves were compared when the two IOLs were centered at apertures of 3.0 mm and 4.5 mm. Spectral transmittance of the two IOLs was measured by the UV-visible spectrophotometer (UV 3300 PC; MAPADA, China). RESULTS: The SN60WF and the PanOptix filtered blue light from 400 to 500 nm. Both IOLs at the far focus and the PanOptix at the intermediate focus showed a decrease in optical quality with increasing decentration and tilt. The PanOptix demonstrated enhanced optical quality compared to the previous gradient at the near focus at a decentration range of 0.3-0.7 mm with a 3.0 mm aperture, and 0.5 mm with a 4.5 mm aperture, whereas other conditions exhibited diminished optical quality with increasing decentration and tilt at the focus of both IOLs. When the two IOLs were centered, the SN60WF had better optical quality at infinity, while the PanOptix had better optical quality at 60 cm and 40 cm defocus. The optical quality of the SN60WF exceeded that of the PanOptix at far focus, with a 3 mm aperture decentration up to 0.7 mm and a 4.5 mm aperture decentration up to 0.3 mm; this observation held true for all tilts, irrespective of aperture size. As both decentration and tilt increased, the optical quality of the SN60WF deteriorated more rapidly than that of the PanOptix at the far focal point. CONCLUSIONS: The SN60WF showed a decrease in optical quality with increasing decentration and tilt. Optical quality of the PanOptix at the near focus increased in some decentration conditions and decreased in some conditions, while it showed a decrease at the other focuses with increasing decentration. While tilt only had a negative effect on optical quality. When both IOLs were centered, the PanOptix provided a wider range of vision, while the SN60WF provided better far distance vision. At the far focus, the SN60WF has better resistance to tilt than the PanOptix, but the optical quality degrades more quickly when decentered and tilted.

4.
Ecotoxicol Environ Saf ; 278: 116425, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723385

ABSTRACT

The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.


Subject(s)
Burkholderia , Metal Nanoparticles , Proteome , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Proteome/metabolism , Burkholderia/metabolism , Proteomics , Bacterial Proteins/metabolism
5.
J Biol Chem ; 298(3): 101623, 2022 03.
Article in English | MEDLINE | ID: mdl-35074427

ABSTRACT

Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Histones , Transcription Factors , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Lysine/metabolism , Methylation , Peptides/chemistry
6.
Genes Dev ; 29(22): 2343-8, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26543161

ABSTRACT

α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides, respectively, and reveal that NTMT1 contains two characteristic structural elements (a ß hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.


Subject(s)
Methyltransferases/chemistry , Methyltransferases/metabolism , Models, Molecular , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line, Tumor , Crystallization , Enzyme Activation/genetics , Gene Knockdown Techniques , Methylation , Methyltransferases/genetics , Mutation , Protein Binding , Protein Structure, Tertiary , S-Adenosylhomocysteine/chemistry
7.
Trends Biochem Sci ; 39(11): 536-47, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25277115

ABSTRACT

PWWP domain-containing proteins are often involved in chromatin-associated biological processes, such as transcriptional regulation and DNA repair, and recent studies have shown that the PWWP domain specifies chromatin localization. Mutations in the PWWP domain, a 100-150 amino acid motif, have been linked to various human diseases, emphasizing its importance. Structural studies reveal that PWWP domains possess a conserved aromatic cage for histone methyl-lysine recognition, and synergistically bind both histone and DNA, which contributes to their nucleosome-binding ability and chromatin localization. Furthermore, the PWWP domain often cooperates with other histone and DNA 'reader' or 'modifier' domains to evoke crosstalk between various epigenetic marks. Here, we discuss these recent advances in understanding the structure and function of the PWWP domain.


Subject(s)
Nucleosomes/metabolism , Protein Structure, Tertiary , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Histones/metabolism , Humans , Methylation , Models, Molecular , Molecular Sequence Data , Protein Binding , Proteins/genetics
8.
J Biol Chem ; 292(14): 5655-5664, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28223359

ABSTRACT

Heterochromatin protein 1 (HP1), a highly conserved non-histone chromosomal protein in eukaryotes, plays important roles in the regulation of gene transcription. Each of the three human homologs of HP1 includes a chromoshadow domain (CSD). The CSD interacts with various proteins bearing the PXVXL motif but also with a region of histone H3 that bears the similar PXXVXL motif. The latter interaction has not yet been resolved in atomic detail. Here we demonstrate that the CSDs of all three human HP1 homologs have comparable affinities to the PXXVXL motif of histone H3. The HP1 C-terminal extension enhances the affinity, as does the increasing length of the H3 peptide. The crystal structure of the human HP1γ CSD (CSDγ) in complex with an H3 peptide suggests that recognition of H3 by CSDγ to some extent resembles CSD-PXVXL interaction. Nevertheless, the prolyl residue of the PXXVXL motif appears to play a role distinct from that of Pro in the known HP1ß CSD-PXVXL complexes. We consequently generalize the historical CSD-PXVXL interaction model and expand the search scope for additional CSD binding partners.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Amino Acid Motifs , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Crystallography, X-Ray , Humans , Protein Domains
9.
Anal Chem ; 90(14): 8607-8615, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29909623

ABSTRACT

Herein, the ultrathin and robust diphenylalanine (FF) self-assembled nanosheets were fabricated by a gold-stabilized strategy for the first time, using a facile electrospray method followed by a thermal treatment process. The key for the gold-stabilized mechanism was explored, demonstrating that the synergy of the stable binding and steric effect between gold nanoparticles (AuNPs) and the exposed amino groups of FF nanosheets, led to strong thermal stability and solvent resistance of the composites. Contributing to the features of remarkable accessible surfaces and strong laser light absorption ability of this FF/Au nanosheets, two robust functional devices, that is, solid-phase microextraction (SPME) fiber and surface-assisted laser desorption/ionization (SALDI) platforms, were in situ prepared for in vitro and in vivo biological analysis. The findings indicated that the fabricated platforms possessed two advantages: (1) rapid absorption/desorption speed (within 5 min) and (2) remarkable enhancement of ionization efficiency with 2 orders of magnitude. As a result, the extraction efficiency of the SPME fiber and the quantitation ability of SALDI platform were significantly improved. This study not only demonstrated that FF/Au composites could be prepared through an electrospray method followed with thermal-treatment to serve as promising adsorption/desorption/ionization materials for specific applications but also provided useful strategy to advance the ideas for future combination of SPME with LDI technique.

10.
Nat Chem Biol ; 12(3): 180-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26807715

ABSTRACT

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Subject(s)
Oligopeptides/pharmacology , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , Animals , Biological Availability , Biotinylation , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Gene Expression Regulation/genetics , Humans , Isomerism , Ligases , Male , Methylation , Mice , Models, Molecular , Polycomb Repressive Complex 1/biosynthesis , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
J Biol Chem ; 291(17): 9000-13, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26933034

ABSTRACT

Covalent modifications of histone N-terminal tails play a critical role in regulating chromatin structure and controlling gene expression. These modifications are controlled by histone-modifying enzymes and read out by histone-binding proteins. Numerous proteins have been identified as histone modification readers. Here we report the family-wide characterization of histone binding abilities of human CW domain-containing proteins. We demonstrate that the CW domains in ZCWPW2 and MORC3/4 selectively recognize histone H3 trimethylated at Lys-4, similar to ZCWPW1 reported previously, while the MORC1/2 and LSD2 lack histone H3 Lys-4 binding ability. Our crystal structures of the CW domains of ZCWPW2 and MORC3 in complex with the histone H3 trimethylated at Lys-4 peptide reveal the molecular basis of this interaction. In each complex, two tryptophan residues in the CW domain form the "floor" and "right wall," respectively, of the methyllysine recognition cage. Our mutation results based on ZCWPW2 reveal that the right wall tryptophan residue is essential for binding, and the floor tryptophan residue enhances binding affinity. Our structural and mutational analysis highlights the conserved roles of the cage residues of CW domain across the histone methyllysine binders but also suggests why some CW domains lack histone binding ability.


Subject(s)
Histones/chemistry , Nuclear Proteins/chemistry , Amino Acid Substitution , Histones/genetics , Histones/metabolism , Humans , Mutation, Missense , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Structure, Tertiary
12.
Biochem J ; 473(2): 179-87, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26527736

ABSTRACT

TXNIP (thioredoxin-interacting protein) negatively regulates the antioxidative activity of thioredoxin and participates in pleiotropic cellular processes. Its deregulation is linked to various human diseases, including diabetes, acute myeloid leukaemia and cardiovascular diseases. The E3 ubiquitin ligase Itch (Itchy homologue) polyubiquitinates TXNIP to promote its degradation via the ubiquitin-proteasome pathway, and this Itch-mediated polyubiquitination of TXNIP is dependent on the interaction of the four WW domains of Itch with the two PPxY motifs of TXNIP. However, the molecular mechanism of this interaction of TXNIP with Itch remains elusive. In the present study, we found that each of the four WW domains of Itch exhibited different binding affinities for TXNIP, whereas multivalent engagement between the four WW domains of Itch and the two PPxY motifs of TXNIP resulted in their strong binding avidity. Our structural analyses demonstrated that the third and fourth WW domains of Itch were able to recognize both PPxY motifs of TXNIP simultaneously, supporting a multivalent binding mode between Itch and TXNIP. Interestingly, the phosphorylation status on the tyrosine residue of the PPxY motifs of TXNIP serves as a molecular switch in its choice of binding partners and thereby downstream biological signalling outcomes. Phosphorylation of this tyrosine residue of TXNIP diminished the binding capability of PPxY motifs of TXNIP to Itch, whereas this phosphorylation is a prerequisite to the binding activity of TXNIP to SHP2 [SH2 (Src homology 2) domain-containing protein tyrosine phosphatase 2] and their roles in stabilizing the phosphorylation and activation of CSK (c-Src tyrosine kinase).


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/genetics , Proline/analogs & derivatives , Amino Acid Sequence , Carrier Proteins/metabolism , Humans , Molecular Sequence Data , Phosphorylation/physiology , Proline/chemistry , Proline/genetics , Proline/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
13.
Molecules ; 22(8)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28786950

ABSTRACT

Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, exhibits beneficial effects on metabolic syndrome. Sustained inflammation plays a crucial role in the pathogenesis of metabolic syndrome. Here we explored the effects of PSPC on high-fat diet (HFD)-induced hepatic inflammation and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + PSPC group, and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. Nicotinamide riboside (NR) was used to increase NAD⁺ levels. Our results showed that PSPC effectively ameliorated obesity and liver injuries in HFD-fed mice. Moreover, PSPC notably blocked hepatic oxidative stress in HFD-treated mice. Furthermore, PSPC dramatically restored NAD⁺ level to abate endoplasmic reticulum stress (ER stress) in HFD-treated mouse livers, which was confirmed by NR treatment. Consequently, PSPC remarkably suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide oligomerization domain protein1/2 (NOD1/2) signaling in HFD-treated mouse livers. Thereby, PSPC markedly diminished the NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation, ultimately lowering the expressions of inflammation-related genes in HFD-treated mouse livers. In summary, PSPC protected against HFD-induced hepatic inflammation by boosting NAD⁺ level to inhibit NLRP3 inflammasome activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hepatitis, Animal/drug therapy , Hepatitis, Animal/metabolism , Inflammasomes/metabolism , Ipomoea batatas/chemistry , NAD/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pigments, Biological/pharmacology , Plant Extracts/pharmacology , Animals , Anthocyanins/chemistry , Anthocyanins/pharmacology , Anti-Inflammatory Agents/chemistry , Diet, High-Fat , Endoplasmic Reticulum Stress , Gene Expression Regulation/drug effects , Hepatitis, Animal/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , NF-kappa B/metabolism , Nod Signaling Adaptor Proteins/genetics , Nod Signaling Adaptor Proteins/metabolism , Obesity/drug therapy , Obesity/metabolism , Obesity/pathology , Oxidative Stress/drug effects , Pigments, Biological/chemistry , Plant Extracts/chemistry , Protein Transport
15.
J Assist Reprod Genet ; 32(8): 1277-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26115720

ABSTRACT

PURPOSE: To ensure the correct interpretation of the results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) from ovarian tissue cryopreserved by vitrification, it is critical to normalize expression levels to a reference gene with stable messenger RNA (mRNA) expression in the vitrified/warmed ovarian tissue. The aim of this work was to identify suitable reference genes for qRT-PCR analysis during ovarian cryopreservation by vitrification. METHODS: GeNorm, NormFinder, comparative Delta-CT, and BestKeeper were used to analyze the expression and stability of the 14 reference genes GAPDH, ABL1, ACTB, CDKN1A, GPER, GUSB, HPRT1, HSP90AB1, IPO8, PPIA, RPL4, RPL30, TBP, and UPAR. RESULTS: Our results indicated that ACTB and RPL4 were relatively stable reference genes in vitrified/warmed ovaries.


Subject(s)
Cryopreservation/methods , Ovary/physiology , Real-Time Polymerase Chain Reaction/methods , Actins/genetics , Animals , Female , Gene Expression Profiling/methods , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Ribosomal Proteins/genetics , Vitrification
16.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472637

ABSTRACT

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Subject(s)
Kidney Diseases , Humans , Kidney Diseases/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Fibrosis
17.
Biochem Biophys Res Commun ; 430(2): 547-53, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23228662

ABSTRACT

PRC2 is the major H3K27 methyltransferase and is responsible for maintaining repressed gene expression patterns throughout development. It contains four core components: EZH2, EED, SUZ12 and RbAp46/48 and some cell-type specific components. In this study, we focused on characterizing the histone binding domains of PHF1 and PHF19, and found that the Tudor domains of PHF1 and PHF19 selectively bind to histone H3K36me3. Structural analysis of these Tudor domains also shed light on how these Tudor domains selectively bind to histone H3K36me3. The histone H3K36me3 binding by the Tudor domains of PHF1, PHF19 and likely MTF2 provide another recruitment and regulatory mechanism for the PRC2 complex. In addition, we found that the first PHD domains of PHF1 and PHF19 do not exhibit histone H3K4 binding ability, nor do they affect the Tudor domain binding to histones.


Subject(s)
DNA-Binding Proteins/chemistry , Histones/chemistry , Nuclear Proteins/chemistry , Polycomb Repressive Complex 2/chemistry , Transcription Factors/chemistry , Amino Acid Sequence , Humans , Methionine/chemistry , Molecular Sequence Data , Polycomb-Group Proteins , Protein Structure, Tertiary
18.
Chemosphere ; 341: 140094, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37678589

ABSTRACT

Microbial nitrogen fixation is a fundamental process in the nitrogen cycle, providing a continuous supply of biologically available nitrogen essential for life. In this study, we combined cerium oxide-doped carbon dots (CeO2/CDs) with electroactive nitrogen-fixing bacterium Azospirillum humicireducens SgZ-5T to enhance nitrogen fixation through ammonium production. Our research demonstrates that treatment of SgZ-5T cells with CeO2/CDs (0.2 mg mL-1) resulted in a 265.70% increase in ammonium production compared to SgZ-5T cells alone. CeO2/CDs facilitate electron transfer in the biocatalytic process, thereby enhancing nitrogenase activity. Additionally, CeO2/CDs reduce the concentration of reactive oxygen species in SgZ-5T cells, leading to increased ammonium production. The upregulation of nifD, nifH and nifK gene expression upon incorporation of CeO2/CDs (0.2 mg mL-1) into SgZ-5T cells supports this observation. Our findings not only provide an economical and environmentally friendly approach to enhance biological nitrogen fixation but also hold potential for alleviating nitrogen fertilizer scarcity.


Subject(s)
Ammonia , Ammonium Compounds , Antioxidants , Carbon , Nitrogen
19.
J Struct Biol ; 180(1): 165-73, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22820306

ABSTRACT

Plant homeodomain (PHD) finger is found to be a versatile reader that functions in recruiting transcription factors and chromatin modification complexes. Bromodomain- and PHD finger-containing (BRPF) proteins are identified as scaffold component in a couple of histone acetyltransferase (HATs) complexes but the biological function of PHD fingers, composing the motif called PZPM (PHD/Zn-knuckle/PHD Motif), in BRPF proteins is far from being well understood. Here we report the three-dimensional solution structure of the second PHD finger of PZPM in human BRPF2. According to the structure, BRPF2 PHD2 possesses a two-strand ß sheet which is different from any other PHD fingers. Functionally, this PHD finger can potentially bind DNA non-specifically with an evolutionarily conserved and positively charged surface. We provide the structural and interaction information of this atypical PHD finger and categorize this BRPF2 PHD2 into a new subset of PHD finger. Moreover our work also shed light on the functional aspect of the PZPM.


Subject(s)
DNA/chemistry , Nuclear Proteins/chemistry , Oligonucleotides/chemistry , Amino Acid Sequence , Base Sequence , Binding Sites , Conserved Sequence , Histone Acetyltransferases , Histone Chaperones , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Surface Properties
20.
J Biol Chem ; 286(42): 36944-55, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21880731

ABSTRACT

MOZ (monocytic leukemic zinc-finger protein) and MORF (MOZ-related factor) are histone acetyltransferases important for HOX gene expression as well as embryo and postnatal development. They form complexes with other regulatory subunits through the scaffold proteins BRPF1/2/3 (bromodomain-PHD (plant homeodomain) finger proteins 1, 2, or 3). BRPF proteins have multiple domains, including two PHD fingers, for potential interactions with histones. Here we show that the first PHD finger of BRPF2 specifically recognizes the N-terminal tail of unmodified histone H3 (unH3) and report the solution structures of this PHD finger both free and in complex with the unH3 peptide. Structural analysis revealed that the unH3 peptide forms a third antiparallel ß-strand that pairs with the PHD1 two-stranded antiparallel ß-sheet. The binding specificity was determined primarily through the recognition of arginine 2 and lysine 4 of the unH3 by conserved aspartic acids of PHD1 and of threonine 6 of the unH3 by a conserved asparagine. Isothermal titration calorimetry and NMR assays showed that post-translational modifications such as H3R2me2as, H3T3ph, H3K4me, H3K4ac, and H3T6ph antagonized the interaction between histone H3 and PHD1. Furthermore, histone binding by PHD1 was important for BRPF2 to localize to the HOXA9 locus in vivo. PHD1 is highly conserved in yeast NuA3 and other histone acetyltransferase complexes, so the results reported here also shed light on the function and regulation of these complexes.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Histone Acetyltransferases/chemistry , Histones/chemistry , Nuclear Proteins/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cattle , DNA-Binding Proteins , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/genetics , Histones/metabolism , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL