Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
BMC Genomics ; 25(1): 587, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862915

ABSTRACT

BACKGROUND: The field of bee genomics has considerably advanced in recent years, however, the most diverse group of honey producers on the planet, the stingless bees, are still largely neglected. In fact, only eleven of the ~ 600 described stingless bee species have been sequenced, and only three using a long-read (LR) sequencing technology. Here, we sequenced the nuclear and mitochondrial genomes of the most common, widespread and broadly reared stingless bee in Brazil and other neotropical countries-Tetragonisca angustula (popularly known in Brazil as jataí). RESULTS: A total of 48.01 Gb of DNA data were generated, including 2.31 Gb of Pacific Bioscience HiFi reads and 45.70 Gb of Illumina short reads (SRs). Our preferred assembly comprised 683 contigs encompassing 284.49 Mb, 62.84 Mb of which (22.09%) corresponded to 445,793 repetitive elements. N50, L50 and complete BUSCOs reached 1.02 Mb, 91 contigs and 97.1%, respectively. We predicted that the genome of T. angustula comprises 17,459 protein-coding genes and 4,108 non-coding RNAs. The mitogenome consisted of 17,410 bp, and all 37 genes were found to be on the positive strand, an unusual feature among bees. A phylogenomic analysis of 26 hymenopteran species revealed that six odorant receptor orthogroups of T. angustula were found to be experiencing rapid evolution, four of them undergoing significant contractions. CONCLUSIONS: Here, we provided the first nuclear and mitochondrial genome assemblies for the ecologically and economically important T. angustula, the fourth stingless bee species to be sequenced with LR technology thus far. We demonstrated that even relatively small amounts of LR data in combination with sufficient SR data can yield high-quality genome assemblies for bees.


Subject(s)
Genome, Mitochondrial , Phylogeny , Animals , Bees/genetics , Cell Nucleus/genetics , Molecular Sequence Annotation , Pollination , Genomics/methods , Genome, Insect , Sequence Analysis, DNA
2.
Cancer ; 130(12): 2150-2159, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462898

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) elevates cancer risk. However, a single MetS assessment does not fully reveal the long-term association with cancer. Inflammation, alongside MetS, could synergistically expedite both the onset and advancement of cancer. This study aims to investigate MetS score trajectories and cancer risk in a large, prospective cohort study. METHODS: The authors prospectively examined the relationship between MetS score trajectory patterns and new-onset cancer in 44,115 participants. Latent mixture modeling was used to identify the MetS score trajectories. Cox proportional hazards regression models were used to evaluate the association between MetS score trajectory patterns and the risk of overall and site-specific cancers. RESULTS: Four MetS score trajectory patterns were identified: low-stable (n = 4657), moderate-low (n = 18,018), moderate-high (n = 18,288), and elevated-increasing (n = 3152). Compared to participants with a low-stable trajectory pattern, the elevated-increasing trajectory pattern was associated with an elevated risk of overall (hazard ratio [HR], 1.27; 95% confidence interval [CI], 1.04-1.55), breast (HR, 2.11; 95% CI, 1.04-4.34), endometrial (HR, 3.33; 95% CI, 1.16-6.77), kidney (HR, 4.52; 95% CI, 1.17-10.48), colorectal (HR, 2.54; 95% CI, 1.27-5.09), and liver (HR, 1.61; 95% CI, 1.09-4.57) cancers. Among participants with chronic inflammation (C-reactive protein levels ≥3 mg/L), the elevated-increasing trajectory pattern was significantly associated with subsequent breast, endometrial, colorectal, and liver cancers. CONCLUSIONS: Trajectories of MetS scores are associated with the occurrence of cancers, especially breast, endometrial, kidney, colorectal, and liver cancers, emphasizing the importance of long-term monitoring and evaluation of MetS. PLAIN LANGUAGE SUMMARY: The association between long-term elevated metabolic syndrome (MetS) scores and a heightened risk of various cancers is a pivotal finding of our study. Our research further indicates that individuals with MetS, particularly when coupled with chronic inflammation, are at an increased risk of cancer. We propose that sustained monitoring and management of MetS could be beneficial in reducing cancer risk.


Subject(s)
Metabolic Syndrome , Neoplasms , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Female , Male , Middle Aged , Neoplasms/epidemiology , Prospective Studies , Adult , Risk Factors , Proportional Hazards Models , Aged , Inflammation/complications
3.
Small ; : e2401995, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818678

ABSTRACT

Upgrading thermosetting polymer waste and harvesting unwanted electromagnetic energy are of great significance in solving environmental pollution and energy shortage problems. Herein, inspired by the glass-blowing art, a spontaneous, controllable, and scalable strategy is proposed to prepare hollow carbon materials by inner blowing and outside blocking. Specifically, hierarchically neuron-like hollow carbon materials (HCMSs) with various sizes are fabricated from melamine-formaldehyde sponge (MS) waste. Benefiting from the synergistic of the hollow "cell body" and the connected "protrusions" networks, HCMSs reveal superior electromagnetic absorption performance with a strong reflection loss of -54.9 dB, electromagnetic-heat conversion ability with a high conversion efficiency of 34.4%, and efficient energy storage performance in supercapacitor. Furthermore, a multifunctional device integrating electromagnetic-heat-electrical energy conversion is designed, and its feasibility is proved by experiments and theoretical calculations. The integrated device reveals an output voltage of 34.5 mV and a maximum output power of 0.89 µW with electromagnetic radiation for 60 s. This work provides a novel solution to recycle polymer waste, electromagnetic energy, and unwanted thermal energy.

4.
Small ; 20(33): e2400980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38545991

ABSTRACT

Polyolefin separators are the most commonly used separators for lithium batteries; however, they tend to shrink when heated, and their Li+ transference number (t Li +) is low. Metal-organic frameworks (MOFs) are expected to solve the above problems due to their high thermal stability, abundant pore structure, and open metal sites. However, it is difficult to prepare high-porosity MOF-based membranes by conventional membrane preparation methods. In this study, a high-porosity free-standing MOF-based safety separator, denoted the BCM separator, is prepared through a nano-interfacial supramolecular adhesion strategy. The BCM separator has a large specific surface area (450.22 m2 g-1) and porosity (62.0%), a high electrolyte uptake (475 wt%), and can maintain its morphology at 200 °C. The ionic conductivity and t Li + of the BCM separator are 1.97 and 0.72 mS cm-1, respectively. Li//LiFePO4 cells with BCM separators have a capacity retention rate of 95.07% after 1100 cycles at 5  C, a stable high-temperature cycling performance of 300 cycles at 80 °C, and good capacity retention at -40 °C. Li//NCM811 cells with BCM separators exhibit significantly improved rate performance and cycling performance. Pouch cells with BCM separators can work at 120 °C and have good safety at high temperature.

5.
Phys Rev Lett ; 133(3): 036401, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094172

ABSTRACT

It is of fundamental importance to characterize the intrinsic properties, like the topological end states, in the on-surface synthesized graphene nanoribbons (GNRs), but the strong electronic interaction with the metal substrate usually smears out their characteristic features. Here, we report our approach to investigate the vibronic excitations of the topological end states in self-decoupled second-layer GNRs, which are grown using an on-surface squeezing-induced spillover strategy. The vibronic progressions show highly spatially localized distributions at the second-layer GNR ends, which can be ascribed to the decoupling-extended lifetime of charging through resonant electron tunneling at the topological end states. In combination with theoretical calculations, we assign the vibronic progressions to specific vibrational modes that mediate the vibronic excitations. The spatial distribution of each resolved excitation shows evident characteristics beyond the conventional Franck-Condon picture. Our work by direct growth of second-layer GNRs provides an effective way to explore the interplay between the intrinsic electronic, vibrational, and topological properties.

6.
J Surg Res ; 296: 66-77, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219508

ABSTRACT

INTRODUCTION: The aim of this study is to develop a model for predicting the risk of prolonged mechanical ventilation (PMV) following surgical repair of acute type A aortic dissection (AAAD). METHODS: We retrospectively collected clinical data from 381 patients with AAAD who underwent emergency surgery. Clinical features variables for predicting postoperative PMV were selected through univariate analysis, least absolute shrinkage and selection operator regression analysis, and multivariate logistic regression analysis. A risk prediction model was established using a nomogram. The model's accuracy and reliability were evaluated using the area under the curve of the receiver operating characteristic curve and the calibration curve. Internal validation of the model was performed using bootstrap resampling. The clinical applicability of the model was assessed using decision curve analysis and clinical impact curve. RESULTS: Among the 381 patients, 199 patients (52.2%) experienced postoperative PMV. The predictive model exhibited good discriminative ability (area under the curve = 0.827, 95% confidence interval: 0.786-0.868, P < 0.05). The calibration curve confirmed that the predicted outcomes of the model closely approximated the ideal curve, indicating agreement between the predicted and actual results (with an average absolute error of 0.01 based on 1000 bootstrap resampling). The decision curve analysis curve demonstrated that the model has significant clinical value. CONCLUSIONS: The nomogram model established in this study can be used to predict the risk of postoperative PMV in patients with AAAD. It serves as a practical tool to assist clinicians in adjusting treatment strategies promptly and implementing targeted therapeutic measures.


Subject(s)
Aortic Dissection , Respiration, Artificial , Humans , Reproducibility of Results , Retrospective Studies , Aortic Dissection/surgery , Nomograms , Stents/adverse effects
7.
Addict Biol ; 29(8): e13430, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39121884

ABSTRACT

Approximately 50 million Americans suffer from chronic pain, and nearly a quarter of chronic pain patients have reported misusing opioid prescriptions. Repeated drug seeking is associated with reactivation of an ensemble of neurons sparsely scattered throughout the dorsomedial prefrontal cortex (dmPFC). Prior research has demonstrated that chronic pain increases intrinsic excitability of dmPFC neurons, which may increase the likelihood of reactivation during drug seeking. We tested the hypothesis that chronic pain would increase oxycodone-seeking behaviour and that the pain state would differentially increase intrinsic excitability in dmPFC drug-seeking ensemble neurons. TetTag mice self-administered intravenous oxycodone. After 7 days of forced abstinence, a drug-seeking session was performed, and the ensemble was tagged. Mice received spared nerve injury (SNI) to induce chronic pain during the period between the first and second seeking session. Following the second seeking session, we performed electrophysiology on individual neurons within the dmPFC to assess intrinsic excitability of the drug-seeking ensemble and non-ensemble neurons. SNI had no impact on sucrose seeking or intrinsic excitability of dmPFC neurons from these mice. In females, SNI increased oxycodone seeking and intrinsic excitability of non-ensemble neurons. In males, SNI had no impact on oxycodone seeking or neuron excitability. Data from females are consistent with clinical reports that chronic pain can promote drug craving and relapse and support the hypothesis that chronic pain itself may lead to neuroadaptations which promote opioid seeking.


Subject(s)
Analgesics, Opioid , Drug-Seeking Behavior , Neuralgia , Neurons , Oxycodone , Prefrontal Cortex , Animals , Oxycodone/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Drug-Seeking Behavior/drug effects , Mice , Neuralgia/physiopathology , Neurons/drug effects , Male , Female , Analgesics, Opioid/pharmacology , Self Administration , Chronic Pain/physiopathology , Sex Factors
8.
BMC Med Inform Decis Mak ; 24(1): 219, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095826

ABSTRACT

PURPOSE: This study aimed to create and validate robust machine-learning-based prediction models for antipsychotic drug (risperidone) continuation in children and teenagers suffering from mania over one year and to discover potential variables for clinical treatment. METHOD: The study population was collected from the national claims database in China. A total of 4,532 patients aged 4-18 who began risperidone therapy for mania between September 2013 and October 2019 were identified. The data were randomly divided into two datasets: training (80%) and testing (20%). Five regularly used machine learning methods were employed, in addition to the SuperLearner (SL) algorithm, to develop prediction models for the continuation of atypical antipsychotic therapy. The area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI) was utilized. RESULTS: In terms of discrimination and robustness in predicting risperidone treatment continuation, the generalized linear model (GLM) performed the best (AUC: 0.823, 95% CI: 0.792-0.854, intercept near 0, slope close to 1.0). The SL model (AUC: 0.823, 95% CI: 0.791-0.853, intercept near 0, slope close to 1.0) also exhibited significant performance. Furthermore, the present findings emphasize the significance of several unique clinical and socioeconomic variables, such as the frequency of emergency room visits for nonmental health disorders. CONCLUSIONS: The GLM and SL models provided accurate predictions regarding risperidone treatment continuation in children and adolescents with episodes of mania and hypomania. Consequently, applying prediction models in atypical antipsychotic medicine may aid in evidence-based decision-making.


Subject(s)
Antipsychotic Agents , Machine Learning , Mania , Risperidone , Humans , Adolescent , Antipsychotic Agents/therapeutic use , Female , Risperidone/therapeutic use , Male , Child , Mania/drug therapy , Child, Preschool , China , Bipolar Disorder/drug therapy , Treatment Outcome
9.
Chem Biodivers ; 21(8): e202400596, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804585

ABSTRACT

Three polysaccharides, PTC, PTH, and PTB, were extracted from Pinellia ternata using three different extraction conditions: room temperature water, hot water, and 2 % Na2CO3 solution. PTC and PTH were composed of rhamnose, glucose, galactose, mannose, glucuronic acid, galacturonic acid, and arabinose, which combine to form complex structures. PTB was composed solely of glucose and rhamnose. Further analysis indicated that PTC and PTB exhibited triple-helix structures. PTC showed the highest scavenging capacity against DPPH, superoxide anion, and hydroxyl radicals, with half maximal inhibitory concentrations (IC50) of 1004.1, 1584.1, and 1584.1 µg/mL, respectively. Additionally, PTC, PTH, and PTB were subjected to sulfation, phosphorylation, and selenization, resulting in the production of nine derivates. The distinctive absorptive bands of these derivates were determined through infrared spectroscopy. Selenized and sulfated derivates have shown significant antitumor and immunoenhancing properties. Our findings revealed that at 400 µg/mL, the inhibition rate of selenated PTB on HeLa cells was 54.2 % and that on HepG2 cells was 43.1 %. Additionally, selenized PTC displayed significant immunoenhancing activity, with a proliferation rate of 63.7 % at 400 µg/mL in RAW264.7 cells. These results provide valuable evidence supporting the consideration of polysaccharides from Pinellia ternata as a potential candidate for the development of antineoplastic drugs.


Subject(s)
Pinellia , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Pinellia/chemistry , Hep G2 Cells , HeLa Cells , Cell Proliferation/drug effects , Mice , Animals , Cell Survival/drug effects , Picrates/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Drug Screening Assays, Antitumor , Biphenyl Compounds/antagonists & inhibitors , Dose-Response Relationship, Drug , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification
10.
Plant Dis ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319631

ABSTRACT

Epimedium sagittatum is a collective term for herbaceous plants belonging to the family Berberidaceae. Their dried leaves and stems have significant therapeutic effects on tumor inhibition, hypertension control, and coronary heart disease (Ke et al. 2023; Zhao et al. 2019). In 2021 and 2022, plants with similar leaf rot symptoms ranging from 30% to 55% was observed on E. sagittatum in Congjiang County, Guizhou province. The initial symptoms of the disease manifest locally on the leaf, with yellowing on the surface edge of the affected tissue, browning in the middle part, and brown-white discoloration in the innermost part (Supplementary Figure S1B). As the disease progresses, the entire infected leaf gradually softens, while the veins remain intact (Supplementary Figure S1C). Ultimately, the leaf withers and dehisces. The nine samples with typical symptoms were collected from Congjiang County, Guizhou province (26.598°N, 106.707°E). Twenty-seven fungi were isolated, including ten isolates of Rhizopus and seventeen isolates of seven other genera. On isolate YYH-CJ-17 many sporangia were formed and turned to a brown-gray to black color on potato dextrose agar medium (PDA) after culturing 5 days under dark at 25 ℃ (Supplementary Figure S2A and S2B). The branches of mycelium were finger-shaped or root-shaped. The sporangium was spherical or nearly spherical, 60-250 µm in diameter, and sporangiospores were elliptical or spherical and 4-8 µm in diameter. The obtained 547 bp ITS fragment (accession OR225970) and 1231 bp EF-1α region (accession OR242258) from isolate YYH-CJ-17 were compared with NR database using the BLAST tool provided by NCBI, which revealed more than 99.5% identity (query cover more than 98%) with the sequences of ITS (accessions MF522822.1) and EF-1α (accession AB281541.1) of Rhizopus oryzae Went & H.C. Prinsen Geerlings (Gao et al. 2022; Zhang et al. 2022). The phylogenetic tree constructed with the ITS and EF-1α gene sequences demonstrates that strain YYH-CJ-17 clusters with R. oryzae in the same branch and the bootstrap value was greater than 99% (Supplementary Figure S3). Based on the morphological characteristics and ITS and EF-1a sequences, the isolate YYH-CJ-17 is identified as R. oryzae. Pathogenicity tests were performed on detached healthy leaves and living plants of E. sagittatum. Healthy leaves of E. sagittatum were subjected to inoculation with isolate YYH-CJ-17 with 5 × 105 CFU mL-1 concentration in sterile culture dishes. The progression of the disease was marked by the gradual softening of the infected leaves and the expansion of the lesions, which ultimately produced black-brown sporangium (Supplementary Figure S4A). Furthermore, the E. sagittatum living plants were sprayed with 5 × 105 CFU mL-1 conidial suspension of isolate YYH-CJ-17, with ddH2O as a negative control, and then were cultivated at 25℃ and 90% humidity for 21 days in the greenhouse. This assay found that the E. sagittatum leaves treated with isolate YYH-CJ-17 exhibited the same symptoms observed on plants in fields (Supplementary Figure S4B). The fungus re-isolated from the inoculated leaves were identified as R. oryzae by ITS sequencing and were blasted with NR database, which highest matched with the sequence of ITS (accessions MF522822.1) mentioned above, thus fulfilling Koch's postulates. R. oryzae has been identified as a causative agent of a diverse array of host diseases, including leaf mildew of tobacco, fruit rot of yellow oleander and pears, and soft rot of bananas (Farooq et al. 2017; Khokhar et al. 2019; Kwon et al. 2012; Pan et al. 2021). To the best of our knowledge, this is the first report of leaf rot on E. sagittatum caused by R. oryzae in China, which will provide clear prevention and management target for the leaf rot disease of E. sagittatum.

11.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632095

ABSTRACT

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Subject(s)
Glycine max , Infertility, Male , Male , Humans , Plants , Pollen/genetics , Fertility , Plant Infertility/genetics , Gene Expression Regulation, Plant
12.
Zhonghua Nan Ke Xue ; 30(2): 128-131, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-39177345

ABSTRACT

Objective: To explore the influence of environment temperature on the incidence of testicular torsion. METHODS: We collected the clinical data on 172 cases of testicular torsion diagnosed in the Second Hospital of Hebei Medical University from December 2013 to December 2020. According to the local environment temperature on the day of onset, we divided the patients into groups A (below 0℃), B (0-10℃), C (10-20℃) and D (above 20℃), and compared the incidence rates of testicular torsion among the four groups, followed by correlation analysis. RESULTS: The incidence rate of testicular torsion was 12.8% (n = 22) in group A, 35.5% (n = 61) in B, 34.9% (n = 60) in C and 16.9% (n = 29) in D, the highest at 0-10℃ in group B, with statistically significant difference among the four groups (χ2 = 29.07, P <0.001). Spearman correlation analysis indicated that the incidence of testicular torsion was negatively correlated with the environment temperature (r = -0.261, P <0.01), with no statistically significant difference among different seasons (χ2 = 5.349, P >0.05), but higher in autumn and winter than in the other two seasons. CONCLUSION: The incidence of testicular torsion is negatively correlated with the environment temperature, elevated when the temperature decreases, but has no statistically significant difference among different seasons, though relatively higher in autumn and winter.


Subject(s)
Seasons , Spermatic Cord Torsion , Temperature , Spermatic Cord Torsion/epidemiology , Humans , Male , Incidence
13.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562850

ABSTRACT

The dmPFC plays a dual role in modulating drug seeking and fear-related behaviors. Learned associations between cues and drug seeking are encoded by a specific ensemble of neurons. This study explored the stability of a dmPFC cocaine seeking ensemble over two weeks and its influence on persistent cocaine seeking and fear memory retrieval. In the first series of experiments, we trained TetTag mice in cocaine self-administration and tagged strongly activated neurons with EGFP during the initial day 7 cocaine seeking session. Subsequently, a follow-up seeking test was conducted two weeks later to examine ensemble reactivation between two seeking sessions via c-Fos immunostaining. In the second series of experiments, we co-injected viruses expressing TRE-cre and a cre-dependent inhibitory PSAM-GlyR into the dmPFC of male and female c-fos -tTA mice to enable "tagging" of cocaine seeking ensemble or cued fear ensemble neurons with an inhibitory chemogenetic receptors. Then we investigated their contribution to subsequent cocaine seeking and fear recall during inhibition of the tagged ensemble by administering uPSEM792s (0.3 mg/kg), a selective ligand for PSAM-GlyR. In both sexes, there was a positive association between the persistence of cocaine seeking and the proportion of reactivated EGFP+ neurons within the dmPFC. More importantly, inhibition of the cocaine seeking ensemble suppressed cocaine seeking, but not recall of fear memory, while inhibition of the fear ensemble reduced conditioned freezing but not cocaine seeking. The results demonstrate that cocaine and fear recall ensembles in the dmPFC are stable, but largely exclusive from one another.

14.
Mitochondrial DNA B Resour ; 9(6): 707-710, 2024.
Article in English | MEDLINE | ID: mdl-38873279

ABSTRACT

The complete mitochondrial genome of the Zaomma eriococci (Ferrière, 1955) (Hymenoptera: Encyrtidae) was obtained through next-generation sequencing, making the first reported complete mitochondrial genome of the genus Zaomma. The mitochondrial genome is 15,648 bp in length and includes 37 classical eukaryotic mitochondrial genes along with an A + T rich region. All 13 protein-coding genes (PCGs) initiate with typical ATN codons. Of these, 10 PCG genes terminate with TAA, while three terminate with TAG. Additionally, there are 22 tRNA genes, ranging in size from 62 to 70 bp. The maximum likelihood phylogenetic tree was constructed based on 13 PCGs, indicates that Z. eriococci is closely related to Tassonia gloriae. This mitochondrial genome will serve as a valuable molecular resource for species identification, genetic analysis, and comparative genomic studies of Z. eriococci, contributing to the growing collection of mitochondrial genomes within the family Encyrtidae.

15.
Huan Jing Ke Xue ; 45(6): 3129-3141, 2024 Jun 08.
Article in Zh | MEDLINE | ID: mdl-38897737

ABSTRACT

Groundwater nitrate (NO3-) contamination in China has become a serious environmental problem, especially in agricultural production areas, which greatly affects the safety of drinking groundwater and requires urgent attention. In this study, the main sources of groundwater nitrate in China were reviewed, including atmospheric deposition, soil nitrogen, agricultural fertilization, and fecal sewage, among which fecal sewage and agricultural fertilization were the main reasons for the excessive groundwater nitrate. The application of hydrochemical analysis, multivariate statistical analysis, stable isotope tracer method, and microbial source tracking in the source apportionment of groundwater nitrate was summarized. All types of source apportionment methods had certain limitations. It is suggested that a variety of methods should be used to identify the source of groundwater nitrate, and the contribution rate of different pollution sources should be calculated using multivariate statistical analysis and isotope quantitative analysis models. The source apportionment of nitrate pollution has undergone a process from qualitative to quantitative research. At present, the SIAR and MixSIAR models based on δ15N-NO3-and δ18O-NO3- have been used widely to analyze the source of nitrate. However, due to the overlap of isotope characteristic values of different input end-members, the difference in δ15N-NO3-and δ18O-NO3- values under different spatial and temporal changes, and the influence of isotope fractionation in the process of nitrogen migration and transformation, the results calculated by the model remain uncertain. It is necessary to further optimize the analytical method of the model to obtain the source of nitrate pollution and its contribution rate more accurately to further aid in the scientific management of groundwater resources.

16.
Huan Jing Ke Xue ; 45(6): 3214-3224, 2024 Jun 08.
Article in Zh | MEDLINE | ID: mdl-38897745

ABSTRACT

Considering the impact of differences in watershed characteristics on river water quality, with the Chaohu Lake Basin as the research object, based on the data of water quality, meteorology, topography, soil, and remote sensing images of the river monitoring points from October 2019 to September 2020, the watershed unit at each monitoring point was divided through digital terrain analysis, and the comprehensive landscape characteristics based on the watershed unit were explored through the comprehensive use of correlation analysis, redundancy analysis, and multiple regression analysis to investigate the influence of comprehensive landscape characteristics based on watershed units (including land use, climate, topography, soil, etc.) on the water quality of rivers around Chaohu Lake. The results showed that:① the water quality of rivers around Chaohu Lake had large spatial differences, with the main pollutants being total nitrogen and ammonia nitrogen. Most of the rivers had total nitrogen concentrations exceeding the Class V water quality standards, and the areas with serious nitrogen and phosphorus pollution were concentrated in the urban area of Hefei and the surrounding rivers, as well as in the middle and lower reaches of the Fengle and Hangbu Rivers. ② The comprehensive landscape characteristics of the watershed unit had a significant impact on the river water quality. Among them, the proportion of built-up land, the density of patches, the dispersion and juxtaposition index, and the Shannon diversity index were positively correlated with the water quality indicators, whereas the proportion of forest and grassland and the spreading index were negatively correlated with the water quality indicators. ③ In different seasons, the effect of the integrated landscape characteristics of the watershed unit on river water quality was stronger in the wet season than in the dry season, which was mainly caused by the difference in precipitation in the dry and wet seasons.

17.
Int J Biol Macromol ; 274(Pt 1): 133243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901507

ABSTRACT

To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/µL sodium heparin, 0.8 ng/µL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/µL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.


Subject(s)
African Swine Fever Virus , RNA-Directed DNA Polymerase , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , African Swine Fever Virus/genetics , African Swine Fever Virus/enzymology , Animals , Recombinant Fusion Proteins/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Swine , Nucleic Acid Amplification Techniques/methods , Protein Domains , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/pharmacology , COVID-19/virology , RNA, Viral/genetics
18.
Transl Psychiatry ; 14(1): 51, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253552

ABSTRACT

Alcohol consumption during pregnancy can significantly impact the brain development of the fetus, leading to long-term cognitive and behavioral problems. However, the underlying mechanisms are not well understood. In this study, we investigated the acute and chronic effects of binge-like alcohol exposure during the third trimester equivalent in postnatal day 7 (P7) mice on brain cell viability, synapse activity, cognitive and behavioral performance, and gene expression profiles at P60. Our results showed that alcohol exposure caused neuroapoptosis in P7 mouse brains immediately after a 6-hour exposure. In addition, P60 mice exposed to alcohol during P7 displayed impaired learning and memory abilities and anxiety-like behaviors. Electrophysiological analysis of hippocampal neurons revealed an excitatory/inhibitory imbalance in alcohol-treated P60 mice compared to controls, with decreased excitation and increased inhibition. Furthermore, our bioinformatic analysis of 376 dysregulated genes in P60 mouse brains following alcohol exposure identified 50 synapse-related and 23 mitochondria-related genes. These genes encoded proteins located in various parts of the synapse, synaptic cleft, extra-synaptic space, synaptic membranes, or mitochondria, and were associated with different biological processes and functions, including the regulation of synaptic transmission, transport, synaptic vesicle cycle, metabolism, synaptogenesis, mitochondrial activity, cognition, and behavior. The dysregulated synapse and mitochondrial genes were predicted to interact in overlapping networks. Our findings suggest that altered synaptic activities and signaling networks may contribute to alcohol-induced long-term cognitive and behavioral impairments in mice, providing new insights into the underlying synaptic and mitochondrial molecular mechanisms and potential neuroprotective strategies.


Subject(s)
Problem Behavior , Female , Pregnancy , Animals , Mice , Ethanol , Mitochondria , Alcohol Drinking , DNA, Mitochondrial , Cognition
19.
Front Microbiol ; 15: 1366814, 2024.
Article in English | MEDLINE | ID: mdl-38577678

ABSTRACT

Introduction: Continuous strawberry cropping often causes soil-borne diseases, with 20 calcium cyanamide being an effective soil fumigant, pig manure can often be used as soil organic fertilizer. Its impact on soil microorganisms structure, however, remains unclear. Methods: This study investigated the effectiveness of calcium cyanamide and pig manure in treating strawberry soil, specifically against strawberry anthracnose. We examined the physical and chemical properties of the soil and the rhizosphere microbiome and performed a network analysis. Results: Results showed that calcium cyanamide treatment significantly reduces the mortality rate of strawberry in seedling stage by reducing pathogen abundance, while increasing actinomycetes and Alphaproteobacteria during the harvest period. This treatment also enhanced bacterial network connectivity, measured by the average connectivity of each Operational Taxonomic Unit (OTU), surpassing other treatments. Moreover, calcium cyanamide notably raised the levels of organic matter, available potassium, and phosphorus in the soil-key factors for strawberry disease resistance and yield. Discussion: Overall, applying calcium cyanamide to soil used for continuous strawberry cultivation can effectively decrease anthracnose incidence. It may be by changing soil physical and chemical properties and enhancing bacterial network stability, thereby reducing the copy of anthracnose. This study highlights the dual benefit of calcium cyanamide in both disease control and soil nutrient enhancement, suggesting its potential as a valuable tool in sustainable strawberry farming.

20.
Int J Biol Macromol ; 260(Pt 2): 129538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246467

ABSTRACT

Enzymatic degradation has been proposed as a suitable solution for addressing PET pollution, but approximately 10 % of PET is left as nonbiodegradable. Microbes can completely degrade PET at the gram level per year. Based on the complementary benefits of microbes and enzymes, a microbe-enzyme system was created to completely degrade PET. Here, a thermophilic microbe-enzyme (TME) system composed of Bacillus thermoamylovorans JQ3 and leaf-branch compost cutinase variant (ICCG) was used to demonstrate the synergistic degradation of PET, enabling 100 % degradation of PET waste at a high PET loading level (360 g/L). Six endogenous PET hydrolases of strain JQ3 were discovered by employing an ester bond hydrolysis function-first genome mining (EGM) strategy and first successfully expressed in E. coli. These hydrolases could release TPA as the final product from PET and preferentially degraded BHET instead of MHET. Of these, carboxylesterase 39_5 and ICCG could degrade PET in a synergistic manner to generate 50 µM of TPA, which was greater than the sum of the individual treatments. Finally, the degradation pathway of the TME system was speculated to include biofilm formation, PET degradation and utilization. The successful implementation of this study rendered a scale-up degradation feasible of PET at a lower cost.


Subject(s)
Escherichia coli , Polyethylene Terephthalates , Escherichia coli/metabolism , Polyethylene Terephthalates/chemistry , Hydrolases/chemistry , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL