Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Mikrochim Acta ; 189(7): 251, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35680710

ABSTRACT

A sensitive nanopipette sensor is established through a unique design of host-guest recognition, which could be further enhanced by the introduction of gold nanoparticles (Au NPs). Generally, the nanopipette is conjugated with caboxylatopillar[5]arenes (CP[5]) or carboxylated leaning pillar[6]arene (CLP[6]) to generate recognition sites. After the addition of pesticide molecules, they would be captured by CP[5] (or CLP[6]), resulting in a significant electronegativity change on the nanopipette's inner surface, which could be determined by the ionic current change. The CP[5]-modified nanopipette exhibited reliable selectivity for paraquat, while the CLP[6]-modified nanopipette showed an ability of detection for both paraquat and diquat. The addition of Au NPs improved the selectivity and sensitivity of the CP[5]-Au NP-modified nanopipette for paraquat sensing. After optimization by lowering the size of the Au NPs, CP[5]-Au NPs (3 nm)-modified nanopipettes achieved lower detection limits of 0.034 nM for paraquat. Furthermore, in real sample analysis, this sensor demonstrates exceptional sensitivity and selectivity. This study provides a new strategy to develop nanopipette sensors for practical small molecule detection. The gold nanoparticles enhanced quartz nanopipette sensor based on host-guest interaction was firstly established, which could achieve an excellent limit of detection of 3.4 × 10-11 mol/L for paraquat.


Subject(s)
Gold , Metal Nanoparticles , Electrochemical Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Paraquat/analysis
2.
Nanoscale ; 13(22): 9960-9970, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34018506

ABSTRACT

The rational design of highly efficient catalysts for ethanol electrooxidation is extremely challenging for developing direct ethanol fuel cells (DEFCs). Herein, a facile one-pot method has been developed to prepare blackberry-like PdAuCu nanoparticles (NPs) with tunable composition and surface structures. Among PdAuCu NPs with different Pd contents (1.6-22 mass%), PdAuCu NPs-0.5 (contained Pd at 2.5 mass%) delivered one of the highest catalytic activities of Pd-based catalysts towards ethanol electrooxidation, exhibiting a mass activity of 23.0 A mgPd-1. Kinetic analysis, electrochemical impedance spectroscopy and CO stripping test results suggested that the excellent electrocatalytic activity may originate from the optimized balance between Pd content and surface structure of PdAuCu NPs-0.5. The optimization of the balance between composition and surface structure would contribute to the further design of multimetallic nanoparticles for fuel cells and other applications.

SELECTION OF CITATIONS
SEARCH DETAIL