Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hepatology ; 77(1): 239-255, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35460276

ABSTRACT

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid transport and catabolism in liver. However, the role of intestinal PPARα in lipid homeostasis is largely unknown. Here, intestinal PPARα was examined for its modulation of obesity and NASH. APPROACH AND RESULTS: Intestinal PPARα was activated and fatty acid-binding protein 1 (FABP1) up-regulated in humans with obesity and high-fat diet (HFD)-fed mice as revealed by using human intestine specimens or HFD/high-fat, high-cholesterol, and high-fructose diet (HFCFD)-fed C57BL/6N mice and PPARA -humanized, peroxisome proliferator response element-luciferase mice. Intestine-specific Ppara or Fabp1 disruption in mice fed a HFD or HFCFD decreased obesity-associated metabolic disorders and NASH. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with fatty acid uptake assays in primary intestinal organoids revealed that intestinal PPARα induced the expression of FABP1 that in turn mediated the effects of intestinal PPARα in modulating fatty acid uptake. The PPARα antagonist GW6471 improved obesity and NASH, dependent on intestinal PPARα or FABP1. Double-knockout ( Ppara/Fabp1ΔIE ) mice demonstrated that intestinal Ppara disruption failed to further decrease obesity and NASH in the absence of intestinal FABP1. Translationally, GW6471 reduced human PPARA-driven intestinal fatty acid uptake and improved obesity-related metabolic dysfunctions in PPARA -humanized, but not Ppara -null, mice. CONCLUSIONS: Intestinal PPARα signaling promotes NASH progression through regulating dietary fatty acid uptake through modulation of FABP1, which provides a compelling therapeutic target for NASH treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Mice, Knockout , Intestines , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Fatty Acids/metabolism
2.
Hepatology ; 75(1): 74-88, 2022 01.
Article in English | MEDLINE | ID: mdl-34387904

ABSTRACT

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS: In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS: This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.


Subject(s)
Hepatomegaly/genetics , Liver Regeneration/genetics , PPAR alpha/metabolism , TEA Domain Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Hepatectomy/adverse effects , Hepatocytes/pathology , Hepatomegaly/pathology , Humans , Liver/pathology , Liver/surgery , Liver Regeneration/drug effects , Male , Mice , Mice, Transgenic , PPAR alpha/agonists , Pyrimidines/administration & dosage , Signal Transduction/drug effects , Signal Transduction/genetics , YAP-Signaling Proteins/genetics
3.
Acta Pharmacol Sin ; 44(11): 2184-2200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37328648

ABSTRACT

Clinically, cardiac dysfunction is a key component of sepsis-induced multi-organ failure. Mitochondria are essential for cardiomyocyte homeostasis, as disruption of mitochondrial dynamics enhances mitophagy and apoptosis. However, therapies targeted to improve mitochondrial function in septic patients have not been explored. Transcriptomic data analysis revealed that the peroxisome proliferator-activated receptor (PPAR) signaling pathway in the heart was the most significantly decreased in the cecal ligation puncture-treated mouse heart model, and PPARα was the most notably decreased among the three PPAR family members. Male Pparafl/fl (wild-type), cardiomyocyte-specific Ppara-deficient (PparaΔCM), and myeloid-specific Ppara-deficient (PparaΔMac) mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce endotoxic cardiac dysfunction. PPARα signaling was decreased in LPS-treated wild-type mouse hearts. To determine the cell type in which PPARα signaling was suppressed, the cell type-specific Ppara-null mice were examined. Cardiomyocyte- but not myeloid-specific Ppara deficiency resulted in exacerbated LPS-induced cardiac dysfunction. Ppara disruption in cardiomyocytes augmented mitochondrial dysfunction, as revealed by damaged mitochondria, lowered ATP contents, decreased mitochondrial complex activities, and increased DRP1/MFN1 protein levels. RNA sequencing results further showed that cardiomyocyte Ppara deficiency potentiated the impairment of fatty acid metabolism in LPS-treated heart tissue. Disruption of mitochondrial dynamics resulted in increased mitophagy and mitochondrial-dependent apoptosis in Ppara△CM mice. Moreover, mitochondrial dysfunction caused an increase of reactive oxygen species, leading to increased IL-6/STAT3/NF-κB signaling. 3-Methyladenine (3-MA, an autophagosome formation inhibitor) alleviated cardiomyocyte Ppara disruption-induced mitochondrial dysfunction and cardiomyopathy. Finally, pre-treatment with the PPARα agonist WY14643 lowered mitochondrial dysfunction-induced cardiomyopathy in hearts from LPS-treated mice. Thus, cardiomyocyte but not myeloid PPARα protects against septic cardiomyopathy by improving fatty acid metabolism and mitochondrial dysfunction, thus highlighting that cardiomyocyte PPARα may be a therapeutic target for the treatment of cardiac disease.


Subject(s)
Cardiomyopathies , Heart Diseases , Humans , Male , Mice , Animals , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Lipopolysaccharides , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Cardiomyopathies/metabolism , Mitochondria/metabolism , Mice, Knockout , Disease Models, Animal , Fatty Acids/metabolism
4.
Sheng Li Xue Bao ; 75(3): 390-402, 2023 Jun 25.
Article in Zh | MEDLINE | ID: mdl-37340648

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a type of heart failure characterized by left ventricular diastolic dysfunction with preserved ejection fraction. With the aging of the population and the increasing prevalence of metabolic diseases, such as hypertension, obesity and diabetes, the prevalence of HFpEF is increasing. Compared with heart failure with reduced ejection fraction (HFrEF), conventional anti-heart failure drugs failed to reduce the mortality in HFpEF due to the complex pathophysiological mechanism and multiple comorbidities of HFpEF. It is known that the main changes of cardiac structure of in HFpEF are cardiac hypertrophy, myocardial fibrosis and left ventricular hypertrophy, and HFpEF is commonly associated with obesity, diabetes, hypertension, renal dysfunction and other diseases, but how these comorbidities cause structural and functional damage to the heart is not completely clear. Recent studies have shown that immune inflammatory response plays a vital role in the progression of HFpEF. This review focuses on the latest research progress in the role of inflammation in the process of HFpEF and the potential application of anti-inflammatory therapy in HFpEF, hoping to provide new research ideas and theoretical basis for the clinical prevention and treatment in HFpEF.


Subject(s)
Heart Failure , Hypertension , Ventricular Dysfunction, Left , Humans , Stroke Volume/physiology , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/metabolism , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/metabolism , Inflammation/complications , Obesity
5.
Hepatology ; 74(4): 1932-1951, 2021 10.
Article in English | MEDLINE | ID: mdl-33896016

ABSTRACT

BACKGROUND AND AIMS: HCC is a leading cause of cancer-related deaths globally with poor outcome and limited therapeutic options. Although the myelocytomatosis (MYC) oncogene is frequently dysregulated in HCC, it is thought to be undruggable. Thus, the current study aimed to identify the critical downstream metabolic network of MYC and develop therapies for MYC-driven HCC. APPROACH AND RESULTS: Liver cancer was induced in mice with hepatocyte-specific disruption of Myc and control mice by administration of diethylnitrosamine. Liquid chromatography coupled with mass spectrometry-based metabolomic analyses revealed that urinary dimethylarginine, especially symmetric dimethylarginine (SDMA), was increased in the HCC mouse model in an MYC-dependent manner. Analyses of human samples demonstrated a similar induction of SDMA in the urines from patients with HCC. Mechanistically, Prmt5, encoding protein arginine N-methyltransferase 5, which catalyzes SDMA formation from arginine, was highly induced in HCC and identified as a direct MYC target gene. Moreover, GSK3326595, a PRMT5 inhibitor, suppressed the growth of liver tumors in human MYC-overexpressing transgenic mice that spontaneously develop HCC. Inhibition of PRMT5 exhibited antiproliferative activity through up-regulation of the tumor suppressor gene Cdkn1b/p27, encoding cyclin-dependent kinase inhibitor 1B. In addition, GSK3326595 induced lymphocyte infiltration and major histocompatibility complex class II expression, which might contribute to the enhanced antitumor immune response. Combination of GSK3326595 with anti-programed cell death protein 1 (PD-1) immune checkpoint therapy (ICT) improved therapeutic efficacy in HCC. CONCLUSIONS: This study reveals that PRMT5 is an epigenetic executer of MYC, leading to repression of the transcriptional regulation of downstream genes that promote hepatocellular carcinogenesis, highlights a mechanism-based therapeutic strategy for MYC-driven HCC by PRMT5 inhibition through synergistically suppressed proliferation and enhanced antitumor immunity, and finally provides an opportunity to mitigate the resistance of "immune-cold" tumor to ICT.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms, Experimental/genetics , Liver Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , Adult , Aged , Aged, 80 and over , Alkylating Agents/toxicity , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Diethylnitrosamine/toxicity , Enzyme Inhibitors/pharmacology , Female , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms/immunology , Liver Neoplasms, Experimental/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Transgenic , Middle Aged , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Quinolines/pharmacology , Up-Regulation , Young Adult
6.
Acta Pharmacol Sin ; 43(5): 1231-1242, 2022 May.
Article in English | MEDLINE | ID: mdl-34376812

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα), a ligand-activated nuclear receptor critical for systemic lipid homeostasis, has been shown closely related to cardiac remodeling. However, the roles of cardiomyocyte PPARα in pressure overload-induced cardiac remodeling remains unclear because of lacking a cardiomyocyte-specific Ppara-deficient (PparaΔCM) mouse model. This study aimed to determine the specific role of cardiomyocyte PPARα in transverse aortic constriction (TAC)-induced cardiac remodeling using an inducible PparaΔCM mouse model. PparaΔCM and Pparafl/fl mice were randomly subjected to sham or TAC for 2 weeks. Cardiomyocyte PPARα deficiency accelerated TAC-induced cardiac hypertrophy and fibrosis. Transcriptome analysis showed that genes related to fatty acid metabolism were dramatically downregulated, but genes critical for glycolysis were markedly upregulated in PparaΔCM hearts. Moreover, the hypertrophy-related genes, including genes involved in extracellular matrix (ECM) remodeling, cell adhesion, and cell migration, were upregulated in hypertrophic PparaΔCM hearts. Western blot analyses demonstrated an increased HIF1α protein level in hypertrophic PparaΔCM hearts. PET/CT analyses showed an enhanced glucose uptake in hypertrophic PparaΔCM hearts. Bioenergetic analyses further revealed that both basal and maximal oxygen consumption rates and ATP production were significantly increased in hypertrophic Pparafl/fl hearts; however, these increases were markedly blunted in PparaΔCM hearts. In contrast, hypertrophic PparaΔCM hearts exhibited enhanced extracellular acidification rate (ECAR) capacity, as reflected by increased basal ECAR and glycolysis but decreased glycolytic reserve. These results suggest that cardiomyocyte PPARα is crucial for the homeostasis of both energy metabolism and ECM during TAC-induced cardiac remodeling, thus providing new insights into potential therapeutics of cardiac remodeling-related diseases.


Subject(s)
Heart Diseases , PPAR alpha , Animals , Disease Models, Animal , Energy Metabolism , Extracellular Matrix/metabolism , Homeostasis , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Positron Emission Tomography Computed Tomography , Ventricular Remodeling
7.
J Biol Chem ; 294(5): 1579-1589, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30530497

ABSTRACT

Sirt6 is an NADH (NAD+)-dependent deacetylase with a critical role in hepatic lipid metabolism. Ketogenesis is controlled by a signaling network of hepatic lipid metabolism. However, how Sirt6 functions in ketogenesis remains unclear. Here, we demonstrated that Sirt6 functions as a mediator of ketogenesis in response to a fasting and ketogenic diet (KD). The KD-fed hepatocyte-specific Sirt6 deficiency (HKO) mice exhibited impaired ketogenesis, which was due to enhanced Fsp27 (fat-specific induction of protein 27), a protein known to regulate lipid metabolism. In contrast, overexpression of Sirt6 in mouse primary hepatocytes promoted ketogenesis. Mechanistically, Sirt6 repressed Fsp27ß expression by interacting with Crebh (cAMP response element-binding protein H) and preventing its recruitment to the Fsp27ß gene promoter. The KD-fed HKO mice also showed exacerbated hepatic steatosis and inflammation. Finally, Fsp27 silencing rescued hypoketonemia and other metabolic phenotypes in KD-fed HKO mice. Our data suggest that the Sirt6-Crebh-Fsp27 axis is pivotal for hepatic lipid metabolism and inflammation. Sirt6 may be a pharmacological target to remedy metabolic diseases.


Subject(s)
Hepatocytes/metabolism , Ketone Bodies/biosynthesis , Proteins/metabolism , Sirtuins/physiology , Animals , Hepatocytes/cytology , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Am J Pathol ; 189(2): 272-282, 2019 02.
Article in English | MEDLINE | ID: mdl-30448405

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) is a key nuclear receptor involved in the control of lipid homeostasis. In rodents, PPARα is also a potent hepatic mitogen. Hepatocyte-specific disruption of PPARα inhibits agonist-induced hepatocyte proliferation; however, little is known about the exact role of PPARα in partial hepatectomy (PHx)-induced liver regeneration. Herein, using hepatocyte-specific PPARα-deficient (PparaΔHep) mice, the function of hepatocyte PPARα in PHx-induced liver regeneration was investigated. PPARα protein level and transcriptional activity were increased in the liver after PHx. Compared with the Pparafl/fl mice, PparaΔHep mice exhibited significantly reduced hepatocyte proliferation at 32 hours after PHx. Consistently, reduced Ccnd1 and Pcna mRNA and CYCD1 and proliferating cell nuclear antigen protein were observed at 32 hours after PHx in PparaΔHep mice. Furthermore, PparaΔHep mice showed increased hepatic lipid accumulation and enhanced hepatic triglyceride contents because of impaired hepatic fatty acid ß-oxidation when compared with that observed in Pparafl/fl mice. These results indicate that PPARα promotes liver regeneration after PHx, at least partially via regulating the cell cycle and lipid metabolism.


Subject(s)
Cell Cycle , Lipid Metabolism , Liver Regeneration , Liver/metabolism , PPAR alpha/metabolism , Animals , Cyclin D1/genetics , Cyclin D1/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Hepatectomy , Male , Mice , Mice, Transgenic , Oxidation-Reduction , PPAR alpha/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Time Factors , Triglycerides/genetics , Triglycerides/metabolism
9.
Hepatology ; 70(1): 154-167, 2019 07.
Article in English | MEDLINE | ID: mdl-30697791

ABSTRACT

Chronic activation of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARA) promotes MYC-linked hepatocellular carcinoma (HCC) in mice. Recent studies have shown that MYC can function as an amplifier of transcription where MYC does not act as an "on-off" switch for gene expression but rather accelerates transcription rates at active promoters by stimulating transcript elongation. Considering the possibility that MYC may amplify the expression of PPARA target genes to potentiate cell proliferation and liver cancer, gene expression was analyzed from livers of wild-type and liver-specific Myc knockout (MycΔHep ) mice treated with the PPARA agonist pirinixic acid. A subset of PPARA target genes was amplified in the presence of MYC, including keratin 23 (Krt23). The induction of Krt23 was significantly attenuated in MycΔHep mice and completely abolished in Ppara-null mice. Reporter gene assays and chromatin immunoprecipitation confirmed direct binding of both PPARA and MYC to sites within the Krt23 promoter. Forced expression of KRT23 in primary hepatocytes induced cell cycle-related genes. These data indicate that PPARA activation elevates MYC expression, which in turn potentiates the expression of select PPARA target genes involved in cell proliferation. Finally, KRT23 protein is highly elevated in human HCCs. Conclusion: These results revealed that MYC-mediated transcriptional potentiation of select PPARA target genes, such as Krt23, may remove rate-limiting constraints on hepatocyte growth and proliferation leading to liver cancer.


Subject(s)
Gene Expression Regulation , Hepatocytes/physiology , Keratins/metabolism , Oncogene Protein p55(v-myc)/metabolism , PPAR alpha/metabolism , Animals , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/etiology , Cell Proliferation , Female , Humans , Keratins/genetics , Keratins, Type I/blood , Liver Neoplasms/blood , Liver Neoplasms/etiology , Male , Mice
10.
Circ Res ; 123(4): 451-466, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29980568

ABSTRACT

RATIONALE: Vascular progenitor cells play key roles in physiological and pathological vascular remodeling-a process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. OBJECTIVE: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identified as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. METHODS AND RESULTS: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specific saturation binding assays identified a high-affinity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed efficient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specific antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. CONCLUSIONS: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.


Subject(s)
Cell Movement , Endothelial Progenitor Cells/metabolism , Endothelium, Vascular/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Receptors, CXCR/metabolism , Regeneration , Adaptor Proteins, Signal Transducing , Animals , Aorta/cytology , Aorta/metabolism , Aorta/physiology , Cells, Cultured , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neuropeptides/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Signal Transduction , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
11.
Arterioscler Thromb Vasc Biol ; 39(4): 765-773, 2019 04.
Article in English | MEDLINE | ID: mdl-30816803

ABSTRACT

Objective- To determine the role of a cytokine-like protein DKK3 (dikkopf-3) in directly transdifferentiating fibroblasts into endothelial cells (ECs) and the underlying mechanisms. Approach and Results- DKK3 overexpression in human fibroblasts under defined conditions for 4 days led to a notable change in cell morphology and progenitor gene expression. It was revealed that these cells went through mesenchymal-to-epithelial transition and subsequently expressed KDR (kinase insert domain receptor) at high levels. Further culture in EC defined media led to differentiation of these progenitors into functional ECs capable of angiogenesis both in vitro and in vivo, which was regulated by the VEGF (vascular endothelial growth factor)/miR (microRNA)-125a-5p/Stat3 (signal transducer and activator of transcription factor 3) axis. More importantly, fibroblast-derived ECs showed the ability to form a patent endothelium-like monolayer in tissue-engineered vascular grafts ex vivo. Conclusions- These data demonstrate that DKK3 is capable of directly differentiating human fibroblasts to functional ECs under defined media and provides a novel potential strategy for endothelial regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Transdifferentiation/physiology , Endothelial Cells/cytology , Fibroblasts/drug effects , Animals , Bioreactors , Cells, Cultured , Culture Media , Epithelial-Mesenchymal Transition/physiology , Fibroblasts/cytology , Humans , Mice , Mice, Inbred NOD , MicroRNAs/physiology , Neovascularization, Physiologic , Recombinant Proteins/biosynthesis , STAT3 Transcription Factor/physiology , Vascular Endothelial Growth Factor Receptor-2/genetics
12.
J Cell Biochem ; 120(7): 11498-11509, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30746745

ABSTRACT

We previously reported that astrocytes are the main sources of interleukin (IL)-17A production that could aggravate neuronal injuries in ischemic stroke. However, the effects of IL-17A on ischemic astrocytes themselves and the underlying molecular mechanism are still unclear. In this study, we found that recombinant mouse (rm) IL-17A could significantly (P < 0.05 or <0.001) alleviate 1-hour oxygen-glucose deprivation (OGD)/reoxygenation (R) 24-hour-induced ischemic injuries in cortical astrocytes with a dose-dependent manner (n = 6 per group). The Western blot and cell cycle analysis results revealed that rmIL-17A significantly ( P < 0.05) inhibited procaspase-3 cleavage without affecting cell proliferation in 1-hour OGD/R 24-hour-treated cortical astrocytes (n = 6 per group). Among the five IL-17 receptor subunits (IL-RA, -RB, -RC, -RD, and -RE), only IL-17RA ( P < 0.01) and -17RC ( P < 0.05) membrane translocation (not messenger RNA and protein) levels were downregulated in cortical astrocytes following 1-hour OGD/reperfusion 24 hours, and rmIL-17A could significantly ( P < 0.05 or <0.001) inhibit this downregulation (n = 6 per group). To further verify the impact of IL-17A on the neurological outcome of ischemic stroke, we found that the intracerebroventricular injection of IL-17A neutralizing monoclonal antibody remarkably ( P < 0.001) reduced the astrocyte activation and improve neurological function ( P < 0.05 or <0.01) of mice following 1-hour middle cerebral artery occlusion/reperfusion (R) 3 to 7 days (n = 6 or 8 per group). These results suggested that IL-17A-mediated alleviation of cortical astrocyte ischemic injuries could affect the neurological outcome of mice with ischemic stroke, which might be mainly dependent on the cell apoptosis pathway through inhibiting the downregulation of IL-17RA and -17RC membrane translocations.

13.
Circulation ; 136(11): 1022-1036, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28674110

ABSTRACT

BACKGROUND: Dickkopf-related protein 3 (DKK3) is a secreted protein that is involved in the regulation of cardiac remodeling and vascular smooth muscle cell differentiation, but little is known about its role in atherosclerosis. METHODS: We tested the hypothesis that DKK3 is atheroprotective using both epidemiological and experimental approaches. Blood DKK3 levels were measured in the Bruneck Study in 2000 (n=684) and then in 2005 (n=574). DKK3-deficient mice were crossed with apolipoprotein E-/- mice to evaluate atherosclerosis development and vessel injury-induced neointimal formation. Endothelial cell migration and the underlying mechanisms were studied using in vitro cell culture models. RESULTS: In the prospective population-based Bruneck Study, the level of plasma DKK3 was inversely related to carotid artery intima-media thickness and 5-year progression of carotid atherosclerosis independently from standard risk factors for atherosclerosis. Experimentally, we analyzed the area of atherosclerotic lesions, femoral artery injury-induced reendothelialization, and neointima formation in both DKK3-/-/apolipoprotein E-/- and DKK3+/+/apolipoprotein E-/- mice. It was demonstrated that DKK3 deficiency accelerated atherosclerosis and delayed reendothelialization with consequently exacerbated neointima formation. To explore the underlying mechanisms, we performed transwell and scratch migration assays using cultured human endothelial cells, which exhibited a significant induction in cell migration in response to DKK3 stimulation. This DKK3-induced migration activated ROR2 and DVL1, activated Rac1 GTPases, and upregulated JNK and c-jun phosphorylation in endothelial cells. Knockdown of the ROR2 receptor using specific siRNA or transfection of a dominant-negative form of Rac1 in endothelial cells markedly inhibited cell migration and downstream JNK and c-jun phosphorylation. CONCLUSIONS: This study provides the evidence for a role of DKK3 in the protection against atherosclerosis involving endothelial migration and repair, with great therapeutic potential implications against atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Cytokines/deficiency , Intercellular Signaling Peptides and Proteins/deficiency , Adaptor Proteins, Signal Transducing , Aged , Aged, 80 and over , Animals , Carotid Intima-Media Thickness/trends , Cell Movement/drug effects , Cell Movement/physiology , Chemokines , Cytokines/administration & dosage , Endothelial Cells/drug effects , Endothelial Cells/physiology , Female , Humans , Intercellular Signaling Peptides and Proteins/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neointima/metabolism , Neointima/prevention & control , Prospective Studies
14.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G283-G299, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28082284

ABSTRACT

Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte (Ppara△Hep)- and macrophage (Ppara△Mac)-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice (Ppara-/- ). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara△Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara△Hep and Ppara-/- mice were protected from these effects. Ppara△Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara△Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara-/- mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara△Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara△Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists.


Subject(s)
Cell Proliferation/drug effects , Hepatocytes/metabolism , Kupffer Cells/metabolism , PPAR alpha/metabolism , Animals , Cholesterol/blood , Hepatocytes/drug effects , Kupffer Cells/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Mice , Mice, Knockout , PPAR alpha/agonists , PPAR alpha/genetics , Peroxisome Proliferators/pharmacology , Pyrimidines/pharmacology , Weight Loss/drug effects , Weight Loss/physiology
15.
Microcirculation ; 24(1)2017 01.
Article in English | MEDLINE | ID: mdl-27681821

ABSTRACT

In recent years, MSCs have emerged as a promising therapeutic cell type in regenerative medicine. They hold great promise for treating cardiovascular diseases, such as myocardial infarction and limb ischemia. MSCs may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits to patients. The efficacy of MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Increasing our understanding of the mechanisms of MSC involvement in vascular regeneration will be beneficial in boosting present therapeutic approaches and developing novel ones to treat cardiovascular diseases. In this review, we aim to summarize current progress in characterizing the in vivo identity of MSCs, to discuss mechanisms involved in cell-based therapy utilizing MSCs, and to explore current and future strategies for vascular regeneration.


Subject(s)
Cardiovascular Diseases/therapy , Mesenchymal Stem Cells/physiology , Regeneration , Animals , Cardiovascular Diseases/pathology , Cell- and Tissue-Based Therapy/methods , Humans
16.
Mediators Inflamm ; 2017: 3526903, 2017.
Article in English | MEDLINE | ID: mdl-28951632

ABSTRACT

Alcoholic liver disease (ALD) is a leading cause of liver-related morbidity and mortality worldwide. There is no effective treatment to prevent the disease progression. Magnesium isoglycyrrhizinate (MgIG) showed potent anti-inflammatory, antioxidant, and hepatoprotective activities and was used for treating liver diseases in Asia. In this study, we examined whether MgIG could protect mice against alcohol-induced liver injury. The newly developed chronic plus binge ethanol feeding model was used to study the role of MgIG in ALD. Serum liver enzyme levels, H&E staining, immunohistochemical staining, flow cytometric analysis, and real-time PCR were used to evaluate the liver injury and inflammation. We showed that MgIG markedly ameliorated chronic plus binge ethanol feeding liver injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and reduced neutrophil infiltration. The reason may be attributed to the reduced expression of proinflammatory cytokines and chemokines with the treatment of MgIG. The hepatoprotective effect of MgIG was associated with suppression of neutrophil ROS production as well as hepatocellular oxidative stress. MgIG may play a critical role in protecting against chronic plus binge ethanol feeding-induced liver injury by regulating neutrophil activity and hepatic oxidative stress.


Subject(s)
Ethanol/toxicity , Hepatitis, Alcoholic/drug therapy , Neutrophils/drug effects , Neutrophils/metabolism , Saponins/therapeutic use , Triterpenes/therapeutic use , Animals , Chemokines/metabolism , Cytokines/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Flow Cytometry , Hepatitis, Alcoholic/metabolism , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects
17.
Biochim Biophys Acta ; 1841(11): 1596-607, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25178843

ABSTRACT

Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for 3 days and 1 week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and ß2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH.

18.
Hepatology ; 59(2): 695-704, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23939942

ABSTRACT

UNLABELLED: Growth arrest and DNA damage-inducible beta (GADD45b) plays an important role in many intracellular events, such as cell cycle arrest, DNA repair, cell survival, apoptosis, and senescence. However, its mechanism of transcriptional regulation remains unclear. In this study the mechanism of peroxisome proliferator-activated receptor α (PPARα) ligand induction of the Gadd45b gene in mouse liver was investigated. Gadd45b messenger RNA (mRNA) was markedly induced by the PPARα agonist Wy-14,643 in wild-type mice but not in Ppara-null mice. Signal transducer and activator of transcription 3 (STAT3) was found to be a repressor of the Gadd45b gene through binding to upstream regulatory elements. The role of STAT3 in control of Gadd45b was confirmed using liver-specific Stat3-null mice. Wy-14,643 treatment stimulated STAT3 ubiquitination leading to activation of the Gadd45b gene as a result of loss of Gadd45b repression by STAT3. STAT3 degradation was induced by forced overexpression of the PPARα target gene-encoded enzyme ACOX1, which produces increased H(2)O(2) as a byproduct of fatty acid ß-oxidation. H(2)O(2) also stimulated expression of Gadd45b in cultured cells. CONCLUSION: PPARα indirectly induces the Gadd45b gene in liver through promoting degradation of the repressor STAT3 as a result of elevated oxidative stress.


Subject(s)
Antigens, Differentiation/metabolism , Liver/metabolism , Oxidative Stress/physiology , PPAR alpha/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cells, Cultured , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , PPAR alpha/deficiency , PPAR alpha/genetics , Peroxisome Proliferators/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/metabolism , STAT3 Transcription Factor/deficiency , STAT3 Transcription Factor/genetics
19.
Drug Metab Dispos ; 43(3): 317-24, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25534769

ABSTRACT

Acetaminophen (APAP) hepatotoxicity is the most common cause of drug-induced liver injury and N-acetylcysteine (NAC) is the primary antidote of APAP poisoning. Wuzhi tablet (WZ), the active constituents well identified and quantified, is a preparation of an ethanol extract of Schisandra sphenanthera and exerts a protective effect toward APAP-induced hepatotoxicity in mice. However, the clinical use of WZ to rescue APAP-induced acute liver injury and the mechanisms involved in the therapeutic effect of WZ remain unclear. Therefore, the effect of WZ on APAP hepatotoxicity was compared with NAC in mice, and molecular pathways contributing to its therapeutic action were investigated. Administration of WZ 4 hours after APAP treatment significantly attenuated APAP hepatotoxicity and exerted much better therapeutic effect than NAC, as revealed by morphologic, histologic, and biochemical assessments. Both WZ and NAC prevented APAP-induced c-Jun N-terminal protein kinase activation and mitochondrial glutathione depletion in livers. The protein expression of nuclear factor erythroid 2-related factor 2 target genes including Gclc, Gclm, Ho-1, and Nqo1 was increased by WZ administration. Furthermore, p53 and p21 levels were upregulated upon APAP exposure, which were completely reversed by postdosing of WZ 4 hours after APAP treatment over 48 hours. In comparison with NAC, WZ significantly increased the expression of cyclin D1, cyclin D-dependent kinase 4, proliferating cell nuclear antigen, and augmenter of liver regeneration in APAP-injured livers. This study demonstrated that WZ possessed a therapeutic efficacy against APAP-induced liver injury by inhibiting oxidative stress and stimulating a regenerative response after liver injury. Thus WZ may represent a new therapy for APAP-induced acute liver injury.


Subject(s)
Acetaminophen/adverse effects , Acetylcysteine/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Schisandra/chemistry , Tablets/pharmacology , Animals , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Plant Extracts/chemistry , Signal Transduction/drug effects
20.
J Biol Chem ; 288(6): 3844-57, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23255598

ABSTRACT

Obesity has been identified as a major risk factor for type 2 diabetes, characterized by insulin resistance in insulin target tissues. Hypoxia-inducible factor 1α (HIF1α) regulates pathways in energy metabolism that become dysregulated in obesity. Earlier studies revealed that HIF1α in adipose tissue is markedly elevated in high-fat diet-fed mice that are obese and insulin-resistant. Genetic ablation of HIF1α in adipose tissue decreased insulin resistance and obesity, accompanied by increased serum adiponectin levels. However, the exact mechanism whereby HIF1α regulates adiponectin remains unclear. Here, acriflavine (ACF), an inhibitor of HIF1α, induced the expression of adiponectin and reduced the expression of SOCS3 in cultured 3T3-L1 adipocytes. Mechanistic studies revealed that HIF1α suppressed the expression of adiponectin through a SOCS3-STAT3 pathway. Socs3 was identified as a novel HIF1α target gene based on chromatin immunoprecipitation and luciferase assays. STAT3 directly regulated adiponectin in vitro in cultured 3T3-L1 adipocytes. ACF was found to prevent diet-induced obesity and insulin resistance. In vivo, ACF also regulated the SOCS3-STAT3-adiponectin pathway, and inhibition of HIF1α in adipose tissue was essential for ACF to improve the SOCS3-STAT3-adiponectin pathway to counteract insulin resistance. This study provides evidence for a novel target gene and signal transduction pathway in adipocytes and indicates that inhibitors of HIF1α have potential utility for the treatment of obesity and type 2 diabetes.


Subject(s)
Adipocytes/metabolism , Adiponectin/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , 3T3-L1 Cells , Acriflavine/pharmacology , Adipocytes/pathology , Adiponectin/genetics , Animals , Anti-Infective Agents, Local/pharmacology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Insulin Resistance/genetics , Mice , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Obesity/pathology , STAT3 Transcription Factor/genetics , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL