Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Fluoresc ; 33(2): 731-737, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36512144

ABSTRACT

In this paper, the novel fluorescence probe XP based on Schiff-base was designed, synthesized and characterized, which could detect Y3+selectively and sensitively. The recognition mechanism of XP toward Y3+ was studied by Job's plot and HRMS. It was investigated that stoichiometric ratio of the probe XP conjugated with Y3+ was 1:2. And the detection limit was calculated as 0.30 µM. In addition, Y3+ was recognized by the test paper made from XP. And the probe XP could detect  Y3+ selectively in Caenorhabditis elegans and the main organs of mice. Thus, XP was considered to have some potential for application in bioimaging.


Subject(s)
Fluorescent Dyes , Yttrium , Mice , Animals , Spectrometry, Fluorescence/methods , Schiff Bases
2.
Genomics ; 114(6): 110485, 2022 11.
Article in English | MEDLINE | ID: mdl-36126832

ABSTRACT

Under the pressure of natural and artificial selection, domestic animals, including chickens, have evolved unique mechanisms of genetic adaptations such as high-altitude adaptation, hot and arid climate adaptation, and desert adaptation. Here, we investigated the genetic basis of cold tolerance in chicken by integrating whole-genome and transcriptome sequencing technologies. Genome-wide comparative analyses of 118 chickens living in different latitudes showed 46 genes and several pathways that may be involved in cold adaptation. The results of the functional enrichment analysis of differentially expressed genes proved the important role of metabolic pathways and immune-related pathways in cold tolerance in chickens. The subsequent integration of whole genome and transcriptome sequencing technology further identified six genes - dnah5 (dynein axonemal heavy chain 5), ptgs2 (prostaglandin-endoperoxide synthase 2), inhba (inhibin beta A subunit), irx2 (iroquois homeobox 2), ensgalg00000054917, and ensgalg00000046652 - requiring more detailed studies. In addition, we also discovered different allele frequency distributions of five SNPs (single nucleotide polymorphisms) within ptgs2 and nine SNPs within dnah5 in chickens in different latitudes, suggesting strong selective pressure of these two genes in chickens. We provide a novel insight into the genetic adaptation in chickens to cold environments, and provide a reference for evaluating and developing adaptive chicken breeds in cold environments.


Subject(s)
Chickens , Genomics , Animals , Chickens/genetics
3.
Anal Chem ; 94(32): 11298-11306, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35926081

ABSTRACT

Herein, a novel strategy was proposed for identifying carbon monoxide (CO), which plays a crucial part in living systems. For the first time, we have managed to design, synthesize, and characterize successfully this new Cu2+-assisted fluorescent probe (DPHP) in detecting CO. Compared with the commonly adopted Pd0-mediated Tsuji-Trost reaction recognition method, such a new strategy did not engage costly palladium (II) salt and generated no leaving group, indicating a satisfactory anti-interference ability. The recognition mechanism was confirmed by IR, 1H NMR titration, HR-MS, cyclic voltammetry, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and optical properties. Surprisingly, it was found that the new method achieved high selectivity and rapid identification of CO with a lower limit of detection (1.7 × 10-8 M). More intriguingly, it could recognize endogenous and exogenous CO in HeLa cells. The cytotoxicity of this new method was so low that it allowed the detection of CO in mice and zebrafish. Basically, our results trigger a novel viewpoint of rationally designing and synthesizing advanced materials for CO detection with unique features, impelling new research in detection chemistry.


Subject(s)
Carbon Monoxide , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , HeLa Cells , Humans , Mice , Optical Imaging/methods , Zebrafish
4.
BMC Genomics ; 22(1): 610, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376144

ABSTRACT

BACKGROUND: Since the domestication of chicken, various breeds have been developed for food production, entertainment, and so on. Compared to indigenous chicken breeds which generally do not show elite production performance, commercial breeds or lines are selected intensely for meat or egg production. In the present study, in order to understand the molecular mechanisms underlying the dramatic differences of egg number between commercial egg-type chickens and indigenous chickens, we performed a genome-wide association study (GWAS) in a mixed linear model. RESULTS: We obtained 148 single nucleotide polymorphisms (SNPs) associated with egg number traits (57 significantly, 91 suggestively). Among them, 4 SNPs overlapped with previously reported quantitative trait loci (QTL), including 2 for egg production and 2 for reproductive traits. Furthermore, we identified 32 candidate genes based on the function of the screened genes. These genes were found to be mainly involved in regulating hormones, playing a role in the formation, growth, and development of follicles, and in the development of the reproductive system. Some genes such as NELL2 (neural EGFL like 2), KITLG (KIT ligand), GHRHR (Growth hormone releasing hormone receptor), NCOA1 (Nuclear receptor coactivator 1), ITPR1 (inositol 1, 4, 5-trisphosphate receptor type 1), GAMT (guanidinoacetate N-methyltransferase), and CAMK4 (calcium/calmodulin-dependent protein kinase IV) deserve our attention and further study since they have been reported to be closely related to egg production, egg number and reproductive traits. In addition, the most significant genomic region obtained in this study was located at 48.61-48.84 Mb on GGA5. In this region, we have repeatedly identified four genes, in which YY1 (YY1 transcription factor) and WDR25 (WD repeat domain 25) have been shown to be related to oocytes and reproductive tissues, respectively, which implies that this region may be a candidate region underlying egg number traits. CONCLUSION: Our study utilized the genomic information from various chicken breeds or populations differed in the average annual egg number to understand the molecular genetic mechanisms involved in egg number traits. We identified a series of SNPs, candidate genes, or genomic regions that associated with egg number, which could help us in developing the egg production trait in chickens.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Genomics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
Planta ; 255(1): 26, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34940902

ABSTRACT

MAIN CONCLUSION: The Albizia julibrissin chloroplasts have a classical chloroplast genome structure, containing 93 coding genes and 34 non-coding genes. Our research provides basic data for plant phylogenetic evolutionary studies. There is limited genomic information available for the important Chinese herb Albizia julibrissin Durazz. In this study, we constructed the chloroplast (Cp) genome of A. julibrissin. The length of the assembled Cp genome was 175,922 bp consisting of four conserved regions: a 5145 bp small single-copy (SSC) region, a 91,323 bp large single-copy (LSC) region, and two identical length-inverted repeat (IR) regions (39,725 bp). This Cp genome included 34 non-coding RNAs and 93 unique genes, the former contains 30 transfer and 4 ribosomal RNA genes. Gene annotation indicated some of the coding genes (82) in the A. julibrissin Cp genome classified in the Leguminosae family, with some to other related families (11). The results show that low GC content (36.9%) and codon bias towards A- or T-terminal codons may affect the frequency of gene codon usage. The sequence analysis identified 30 forward, 18 palindrome, and 1 reverse repeat > 30 bp length, and 149 simple sequence repeats (SSR). Fifty-five RNA editing sites in the Cp of A. julibrissin were predicted, most of which are C-to-U conversions. Analysis of the reverse repeat expansion or contraction and divergence area between several species, including A. julibrissin, was performed. The phylogenetic tree revealed that A. julibrissin was most closely related to Albizia odoratissima and Albizia bracteata, followed by Samanea saman, forming an evolutionary branch with Mimosa pudica and Leucaena trichandra. The research results are helpful for breeding and genetic improvement of A. julibrissin, and also provide valuable information for understanding the evolution of this plant.


Subject(s)
Albizzia , Fabaceae , Genome, Chloroplast , Base Composition , Phylogeny
6.
Acta Physiol Plant ; 41(7): 126, 2019.
Article in English | MEDLINE | ID: mdl-32214546

ABSTRACT

Toona sinensis is a deciduous tree native to eastern and southeastern Asia that has important culinary and cultural values. To expand current knowledge of the transcriptome and functional genomics in this species, a de novo transcriptome sequence analysis of young and mature leaf tissues of T. sinensis was performed using the Illumina platform. Over 8.1 Gb of data were generated, assembled into 64,541 unigenes, and annotated with known biological functions. Proteins involved in primary metabolite biosynthesis were identified based on similarities to known proteins, including some related to biosynthesis of carbohydrates, amino acids, lipids, and energy. Analysis of unigenes differentially expressed between young and mature leaves (transcriptomic libraries 'YL' and 'ML', respectively) showed that the KEGG pathways of phenylpropanoid, naringenin, lignin, cutin, suberin, and wax biosynthesis were significantly enriched in mature leaves. These results not only expand knowledge of transcriptome characteristics for this valuable species, but also provide a useful transcriptomic dataset to accelerate the researches on its metabolic mechanisms and functional genomics. This study can also further the understanding of unique aromatic metabolism and Chinese medicinal properties of T. sinensis.

7.
Mol Biol Rep ; 41(10): 6475-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24973888

ABSTRACT

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) has become the preferred technique for studying low-abundance RNA expression. Proper normalization is a critical but often underappreciated aspect of quantitative gene expression analysis; popular endogenous control genes are usually selected with little knowledge of their real suitability. To date, there are very few reports regarding the general validation of endogenous control genes for microRNA (miRNA) expression analysis in bovine tissue. In the present study, eight candidate reference genes (U6, 18S rRNA, GAPDH, ACTB, miR-191, miR-15a, miR-18a, let-7f) were tested for use as normalizers of bovine miRNA in RT-qPCR assays. Their selection was based on publicly available data concerning normalization, hierarchical clustering and sequencing. Three of the genes (miR-191, U6-1 and let-7f) were found to be highly consistent in their expression across eight different bovine solid tissues. It is commonly accepted that gene expression studies should be normalized using more than one endogenous control gene. Based on our results, we propose using the combined results for miR-191, U6-1 and let-7f as the endogenous control for normalization of miRNA levels in qRT-PCR analysis of diverse bovine tissues. This result could act a guideline for future work on bovine miRNA expression.


Subject(s)
Gene Expression Profiling , MicroRNAs/genetics , Animals , Cattle , Gene Expression , Organ Specificity/genetics , RNA Stability , Transcriptome
8.
Antioxidants (Basel) ; 13(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39061928

ABSTRACT

Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate the antioxidant properties of poplar bud (Populus) extract (PBE) and Chinese propolis (CP) and to elucidate the mechanisms behind their activity. High-performance liquid chromatography (HPLC) analysis revealed that both PBE and CP contain a significant amount of phenolic acids and flavonoids. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays demonstrated that PBE and CP possess excellent antioxidant activity. Furthermore, administration of PBE and CP improved the survival rate of C. elegans under oxidative stress. They also decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of antioxidant enzymes (SOD, CAT). PBE and CP intervention upregulated the expression of key genes daf-16, sod-3, hsp-16.2, and skn-1 in nematodes. This suggests that the antioxidant activity of PBE and CP is dependent on daf-16 and skn-1 signaling pathways. In conclusion, poplar bud extracts ha have the potential to become a substitute for propolis and a potential therapeutic agent for treating diseases associated with oxidative damage.

9.
J Hazard Mater ; 469: 133968, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452682

ABSTRACT

Pb2+ is a heavy metal ion pollutant that poses a serious threat to human health and ecosystems. The conventional methods for detecting Pb2+ have several limitations. In this study, we introduce a novel fluorescent probe that enables the detection of Pb2+ in the near-infrared region, free from interference from other common ions. A unique characteristic of this probe is its ability to rapidly and accurately identify Pb2+ through ratiometric measurements accompanied by a large Stokes shift of 201 nm. The limit of detection achieved by probe was remarkably low, surpassing the standards set by the World Health Organization, and outperforming previously reported probes. To the best of our knowledge, this is the first organic small-molecule fluorescent probe with both near-infrared emission and ratiometric properties for the detection of Pb2+. We present a triple-mode sensing platform constructed using a probe that allows for the sensitive and selective recognition of Pb2+ in common food items. Furthermore, we successfully conducted high-quality fluorescence imaging of Pb2+ in various samples from common edible plants, HeLa cells, Caenorhabditis elegans, and mice. Importantly, the probe-Pb2+ complex exhibited tumour-targeting capabilities. Overall, this study presents a novel approach for the development of fluorescent probes for Pb2+ detection.


Subject(s)
Fluorescent Dyes , Lead , Humans , Animals , Mice , HeLa Cells , Ecosystem
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124828, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029204

ABSTRACT

Zn2+ plays a vital role in regulating various life processes, such as gene expression, cell signaling, and brain function. In this study, a near-infrared fluorescent probe AXS was synthesized to detect Zn2+ with good fluorescence specificity, high selectivity, and high sensitivity; the detection limit of Zn2+ was 6.924 × 10-11 M. The mechanism of Zn2+ recognition by the AXS probe was investigated by 1H nuclear magnetic resonance titrations, UV-visible spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and high-resolution mass spectrometry. Test paper experiments showed that the AXS probe could detect Zn2+ in real samples. In addition, quantitative and qualitative detection of Zn2+ in common foodstuffs was achieved. For portable Zn2+ detection, a smartphone detection platform was also developed based on the AXS probe. Importantly, the AXS probe showed good bioimaging capabilities in Caenorhabditis elegans and mice.

11.
J Anim Sci Biotechnol ; 15(1): 45, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556896

ABSTRACT

BACKGROUND: Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens. RESULTS: We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens. CONCLUSIONS: In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.

12.
Poult Sci ; 103(6): 103694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663207

ABSTRACT

Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.


Subject(s)
Ducks , Feathers , Genome-Wide Association Study , Pigmentation , Whole Genome Sequencing , Animals , Ducks/genetics , Ducks/physiology , Genome-Wide Association Study/veterinary , Pigmentation/genetics , Whole Genome Sequencing/veterinary , Phenotype , Genome
13.
Anal Chim Acta ; 1276: 341602, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573096

ABSTRACT

Conventional ascorbic acid (AA) detection methods such as chromatography, capillary electrophoresis, colorimetry, electrochemical detection, and enzymatic analysis require expensive equipment and complicated operation. Simple, rapid, and accurate AA detection is essential to inspect food quality, diagnose diseases, and assess immunity in humans. In this study, the first near-infrared fluorescence sensor DBHM with aggregation-induced emission was developed to detect AA under the involvement of Cu2+. The DBHM + Cu2+ sensor showed high sensitivity to AA with a limit of detection of 2.37 µM. The AA detection mechanism was investigated by optical studies, 1H NMR titration, high-resolution mass spectrometry, and infrared spectroscopy. AA was detected qualitatively and quantitatively by the DBHM + Cu2+ sensor in beverages, fruits, and Vitamin C tablets using a dual-mode (fluorescence and smartphone app) sensing platform. The new sensing system also showed low toxicity and excellent bioimaging in HeLa cells, C. elegans, and mice. This sensor could advance AA detection technology in the food industry and has potential bioimaging applications.


Subject(s)
Fluorescent Dyes , Quantum Dots , Mice , Humans , Animals , Fluorescent Dyes/toxicity , Fluorescent Dyes/chemistry , Ascorbic Acid/analysis , HeLa Cells , Caenorhabditis elegans , Quantum Dots/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods
14.
Genes (Basel) ; 14(4)2023 03 31.
Article in English | MEDLINE | ID: mdl-37107611

ABSTRACT

Plumage color is an artificially and naturally selected trait in domestic ducks. Black, white, and spotty are the main feather colors in domestic ducks. Previous studies have shown that black plumage color is caused by MC1R, and white plumage color is caused by MITF. We performed a genome-wide association study (GWAS) to identify candidate genes associated with white, black, and spotty plumage in ducks. Two non-synonymous SNPs in MC1R (c.52G>A and c.376G>A) were significantly related to duck black plumage, and three SNPs in MITF (chr13:15411658A>G, chr13:15412570T>C and chr13:15412592C>G) were associated with white plumage. Additionally, we also identified the epistatic interactions between causing loci. Some ducks with white plumage carry the c.52G>A and c.376G>A in MC1R, which also compensated for black and spotty plumage color phenotypes, suggesting that MC1R and MITF have an epistatic effect. The MITF locus was supposed to be an upstream gene to MC1R underlying the white, black, and spotty colors. Although the specific mechanism remains to be further clarified, these findings support the importance of epistasis in plumage color variation in ducks.


Subject(s)
Ducks , Genome-Wide Association Study , Animals , Ducks/genetics , Pigmentation/genetics , Feathers , Polymorphism, Single Nucleotide/genetics
15.
Poult Sci ; 102(5): 102242, 2023 May.
Article in English | MEDLINE | ID: mdl-36931071

ABSTRACT

High dropping moisture (DM) in poultry production has deleterious effects on the environment, feeding cost, and public health of people and animals. To explore the contributing genetic components, we classified DM of 67-wk-old Rhode Island Red (RIR) hens at 4 different levels and evaluated the underlying genetic heritability. We found the heritability of DM to be 0.219, indicating a moderately heritable trait. We then selected chickens with the highest and lowest DM levels. Using transcriptome, we only detected 12 differentially expressed genes (DEGs) between these 2 groups from the spleen, and 1,507 DEGs from intestinal tissues (jejunum and cecum). The low number of DEGs observed in the spleen suggests that differing moisture levels are not attributed to pathogenic infection. Fourteen of the intestinal high expressed genes are associated with water-salt metabolism (WSM). We also investigated the gut microbial composition by 16S rRNA gene amplicon sequencing. Six different microbial operational taxonomic units (OTUs) (Cetobacterium, Sterolibacterium, Elusimicrobium, Roseburia, Faecalicoccus, and Megamonas) between the 2 groups from jejunum and cecum are potentially biomarkers related to DM levels. Our results identify a genetic component to chicken DM, and can guide breeding strategies.


Subject(s)
Chickens , Gastrointestinal Microbiome , Animals , Female , Chickens/genetics , Chickens/microbiology , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Cecum/microbiology , Gene Expression Profiling/veterinary , Transcriptome
16.
Plant Genome ; : e20258, 2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36209364

ABSTRACT

Ginger (Zingiber officinale Roscoe) is an important plant used worldwide for medicine and food. The R2R3-MYB transcription factor (TF) family has essential roles in plant growth, development, and stresses resistance, and the number of genes in the family varies greatly among different types of plants. However, genome-wide discovery of ZoMYBs and gene responses to stresses have not been reported in ginger. Therefore, genome-wide analysis of R2R3-MYB genes in ginger was conducted in this study. Protein phylogenetic relations and conserved motifs and chromosome localization and duplication, structure, and cis-regulatory elements were analyzed. In addition, the expression patterns of selected genes were analyzed under two different stresses. A total of 299 candidate ZoMYB genes were discovered in ginger. Based on groupings of R2R3-MYB genes in the model plant Arabidopsis thaliana (L.) Heynh., ZoMYBs were divided into eight groups. Genes were distributed across 22 chromosomes at uneven densities. In gene duplication analysis, 120 segmental duplications were identified in the ginger genome. Gene expression patterns of 10 ZoMYBs in leaves of ginger under abscisic acid (ABA) and low-temperature stress treatments were different. The results will help to determine the exact roles of ZoMYBs in anti-stress responses in ginger.

17.
J Ethnopharmacol ; 293: 115329, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35490901

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge is a bulk medicinal material used in traditional Chinese medicine, that can cure cardiovascular diseases, neurasthenia, and other conditions. Sweating is a frequently used method of processing S. miltiorrhiza for medical applications. We previously demonstrated changes to the metabolic profile of linoleic acid, glyoxylate, and dicarboxylate after Sweating. However, this alteration has not been explained at the molecular level. MATERIALS AND METHODS: Fresh roots of Salvia miltiorrhiza Bunge were treated by the Sweating processing, and then the tandem mass tag technique was used to compare the proteome difference between Sweating S. miltiorrhiza and non-Sweating S. miltiorrhiza. RESULTS: We identified a total of 850 differentially expressed proteins after Sweating treatment in S. miltiorrhiza, including 529 upregulated proteins and 321 downregulated proteins. GO enrichment analysis indicated that these differentially expressed proteins are involved in external encapsulating structure, cell wall, oxidoreductase activity, ligase activity, and others. Further analysis showed that CYP450, the pathogenesis-related protein Bet v 1 family, and the peroxidase domain were the major protein domains. KEGG enrichment identified 18 pathways, of which phenylpropanoid biosynthesis is the most important one related to the metabolite profile and is the principal chemical component of S. miltiorrhiza. CONCLUSION: This study addressed potential molecular mechanisms in S. miltiorrhiza after Sweating, and the findings provide reasons for the changes in biochemical properties and metabolites changes which might cause pharmacological variation at the proteome level.


Subject(s)
Salvia miltiorrhiza , Medicine, Chinese Traditional , Plant Roots/metabolism , Proteome , Proteomics , Salvia miltiorrhiza/chemistry , Sweating
18.
Adipocyte ; 10(1): 483-492, 2021 12.
Article in English | MEDLINE | ID: mdl-34693860

ABSTRACT

Intramuscular fat, as one of the most important palatability attribute of beef carcase, is the primary determinant of beef quality. The research of adipogenesis mechanism would provide new insight into intramuscular fatty deposition. Here, the role of microRNA-378 was investigated during bovine adipogenic differentiation. It was revealed that miR-378 expression exists variably in bovine major tissue and organs by RT-qPCR. It was predicted that miR-378 targets CaMKK2, as an AMPKα kinase, by DIANA Tools. For better research, primary preadipocytes with stable transfection for up-/down-regulated expression of miR-378 were constructed by lentiviral vectors with GFP gene. The analyses of qPCR showed that PPARγ and adiponectin mRNA levels increased, but C/EBPß, pref-1 and CaMKK2 mRNA levels decreased during adipogenic differentiation. When miR-378 was overexpressed, preadipocytes proliferation became slower, there are more cellular lipid droplets, and PPARγ and C/EBPß mRNA levels were higher, but pref-1, adiponectin and CaMKK2 were lower than control groups. Luciferase assay and western blot analysis validated that miR-378 binds the nucleotide sites of the 3'- untranslated region of CaMKK2, which inhibits the mRNA and protein expression of CaMKK2. These findings suggest that miR-378 promotes adipogenic differentiation in bovine intramuscular preadipocytes by targeting CaMKK2 via AMPK signalling pathway.


Subject(s)
Adipogenesis , MicroRNAs , Adipocytes , Adipogenesis/genetics , Animals , Cattle , Cell Differentiation , MicroRNAs/genetics , PPAR gamma
19.
Front Genet ; 12: 566047, 2021.
Article in English | MEDLINE | ID: mdl-33995468

ABSTRACT

Although the genetic foundation of chicken body feather color has been extensively explored, that of tail feather color remains poorly understood. In the present study, we used a synthetic chicken dwarf line (DW), derived from hybrids bred between a black tail chicken breed, Rhode Island Red (RIR), and a white tail breed, dwarf layer (DL), to investigate the genetic rules associated white/black tail color. Even though the body feathers are predominantly red, the DW line still comprises individuals with black or white tails after more than 10 generations of self-crossing and selection for the body feather color. We first performed four crosses using the DW chickens, including black-tailed males to females, reciprocal crosses between the black and white, and white males to females to elucidate the inheritance pattern of the white/black tail. We also performed a genome-wide association (GWA) analysis to determine the candidate genomic regions underlying the tail feather color using black tail chickens from the RIR and DW lines and white individuals from the DW line. In the crossing experiment, we found that (i) the white/black tail feather color is independent of body feather color; (ii) the phenotype is a simple autosomal trait; and (iii) the white is dominant to the black in the DW line. The GWA results showed that seven single-nucleotide polymorphisms (SNPs) on chromosome 24 were significantly correlated with tail feather color. The significant region (3.97-4.26 Mb) comprises nine known genes (NECTIN1, THY1, gga-mir-1466, USP2, C1QTNF5, RNF26, MCAM, CBL, and CCDC153) and five anonymous genes. This study revealed that the white/black tail feather trait is autosome-linked in DW chickens. Fourteen genes were found in the significant ~0.29 Mb genomic region, and some, especially MCAM, are suggested to play critical roles in the determination of white/black tail feather color. Our research is the first study on the genetics underlying tail feather color and could help further the understanding of feather pigmentation in chickens.

20.
Genes (Basel) ; 13(1)2021 12 29.
Article in English | MEDLINE | ID: mdl-35052428

ABSTRACT

Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.


Subject(s)
Avian Proteins/metabolism , Gene Expression Regulation, Developmental , Hormones/blood , Hypothalamus/metabolism , Molting/physiology , Ovary/metabolism , Transcriptome , Aging , Animals , Avian Proteins/genetics , Chickens , Feathers/growth & development , Feathers/metabolism , Female , Gene Expression Profiling , Hypothalamus/growth & development , Ovary/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL