Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 632(8024): 366-374, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961294

ABSTRACT

Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.


Subject(s)
Amygdala , Food Preferences , Memory Consolidation , Memory, Long-Term , Social Behavior , Animals , Male , Mice , Amygdala/physiology , Amygdala/cytology , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mice, Inbred C57BL , Odorants/analysis , Olfactory Bulb/physiology , Olfactory Bulb/cytology , Single-Cell Analysis , Synapses/metabolism , Transcriptome , Food Preferences/physiology , Food Preferences/psychology
2.
Nature ; 626(7997): 128-135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233523

ABSTRACT

The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.


Subject(s)
Alternative Splicing , Receptors, G-Protein-Coupled , Receptors, Peptide , Synapses , Animals , Mice , Alternative Splicing/genetics , GTP-Binding Protein alpha Subunits, G12-G13 , GTP-Binding Protein alpha Subunits, Gs , Ligands , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/deficiency , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Synapses/metabolism , Signal Transduction
3.
Nature ; 627(8003): 374-381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326616

ABSTRACT

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Subject(s)
Astrocytes , Cell Communication , Gene Expression Profiling , Memory, Long-Term , Neurons , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/physiology , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/physiology , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Memory, Long-Term/physiology , Mitogen-Activated Protein Kinases/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Sequence Analysis, RNA , Single Molecule Imaging , Single-Cell Gene Expression Analysis , Ubiquitination
4.
Expert Rev Mol Med ; 26: e12, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682644

ABSTRACT

Despite gene-expression profiling being one of the most common methods to evaluate molecular dysregulation in tissues, the utilization of cell-free messenger RNA (cf-mRNA) as a blood-based non-invasive biomarker analyte has been limited compared to other RNA classes. Recent advancements in low-input RNA-sequencing and normalization techniques, however, have enabled characterization as well as accurate quantification of cf-mRNAs allowing direct pathological insights. The molecular profile of the cell-free transcriptome in multiple diseases has subsequently been characterized including, prenatal diseases, neurological disorders, liver diseases and cancers suggesting this biological compartment may serve as a disease agnostic platform. With mRNAs packaged in a myriad of extracellular vesicles and particles, these signals may be used to develop clinically actionable, non-invasive disease biomarkers. Here, we summarize the recent scientific developments of extracellular mRNA, biology of extracellular mRNA carriers, clinical utility of cf-mRNA as disease biomarkers, as well as proposed functions in cell and tissue pathophysiology.


Subject(s)
Biomarkers , Cell-Free Nucleic Acids , RNA, Messenger , Animals , Humans , Extracellular Vesicles/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
5.
Curr Hypertens Rep ; 26(4): 175-182, 2024 04.
Article in English | MEDLINE | ID: mdl-38147201

ABSTRACT

PURPOSE OF REVIEW: This review summarizes the potential of cell-free nucleic acids for predicting preeclampsia, contrasts them with other methods, and discusses these findings' relevance to preeclampsia's pathogenesis and care. RECENT FINDINGS: Recent studies have demonstrated the utility of cell-free nucleic acids in early preeclampsia risk prediction. Encouragingly, nucleic acid measurement exhibits similar or better sensitivity as compared to standard screening assays and furthermore sheds light on preeclampsia's underlying placental biology. Over the past decade, liquid biopsies measuring cell-free nucleic acids have found diverse applications, including in prenatal care. Recent advances have extended their utility to predict preeclampsia, a major cause of maternal mortality. These assays assess methylation patterns in cell-free DNA (cfDNA) or gene levels in cell-free RNA (cfRNA). Currently, preeclampsia care focuses on blood pressure control, seizure prevention, and delivery. If validated, early prediction of preeclampsia through liquid biopsies can improve maternal health and deepen our understanding of its causes.


Subject(s)
Cell-Free Nucleic Acids , Hypertension , Pre-Eclampsia , Pregnancy , Humans , Female , Cell-Free Nucleic Acids/genetics , Placenta , Blood Pressure
6.
Nat Commun ; 15(1): 4032, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740753

ABSTRACT

Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.


Subject(s)
Photosynthesis , Regeneration , Symbiosis , Animals , Regeneration/physiology , Chlorophyta/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Sci Rep ; 14(1): 2033, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263350

ABSTRACT

Rapid expansion of the pulmonary microvasculature through angiogenesis drives alveolarization, the final stage of lung development that occurs postnatally and dramatically increases lung gas-exchange surface area. Disruption of pulmonary angiogenesis induces long-term structural and physiologic lung abnormalities, including bronchopulmonary dysplasia, a disease characterized by compromised alveolarization. Although endothelial cells are primary determinants of pulmonary angiogenesis, mesenchymal cells (MC) play a critical and dual role in angiogenesis and alveolarization. Therefore, we performed single cell transcriptomics and in-situ imaging of the developing lung to profile mesenchymal cells during alveolarization and in the context of lung injury. Specific mesenchymal cell subtypes were present at birth with increasing diversity during alveolarization even while expressing a distinct transcriptomic profile from more mature correlates. Hyperoxia arrested the transcriptomic progression of the MC, revealed differential cell subtype vulnerability with pericytes and myofibroblasts most affected, altered cell to cell communication, and led to the emergence of Acta1 expressing cells. These insights hold the promise of targeted treatment for neonatal lung disease, which remains a major cause of infant morbidity and mortality across the world.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Mesenchymal Stem Cells , Infant, Newborn , Infant , Humans , Endothelial Cells , Lung
8.
Sci Adv ; 10(3): eadk1057, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241369

ABSTRACT

Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.


Subject(s)
Premature Birth , Infant, Newborn , Female , Humans , Pregnancy , Premature Birth/genetics , Progestins , Genetic Loci , Mutation
9.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38597954

ABSTRACT

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Macrophages , Inflammation , RNA, Viral , Lung
SELECTION OF CITATIONS
SEARCH DETAIL