ABSTRACT
Quantitative analysis of cell-free RNA (cfRNA) in plasma sample can be used for screening, diagnosing, and prognosticating of multiple diseases. Here, we report a quantitative CRISPR/Cas digital imaging platform (qCasdip) for the detection of various cfRNAs, including circular RNAs and miRNAs, in clinical samples at the attomolar (aM) level without the need for preamplification. Digital counting strategy provides qCasdip quantitative ability with a linear detection range of 102-106 aM. Meanwhile, qCasdip demonstrated cfRNA profiling in clinical plasma samples, improving the diagnosis of breast cancer. These data highlight the potential of qCasdip to quantitatively assess the molecular patterns of specific cfRNA panels in plasma, thereby providing a novel liquid biopsy solution to enhance disease diagnosis.
ABSTRACT
Site-specific imaging of target genes using CRISPR probes is essential for understanding the molecular mechanisms of gene function and engineering tools to modulate its downstream pathways. Herein, we develop CRISPR/Cas9-mediated signal amplification by exchange reaction (CasSABER) for programmable in situ imaging of low and nonrepetitive regions of the target gene in the cell nucleus. The presynthesized primer-exchange reaction (PER) probe is able to hybridize multiple fluorophore-bearing imager strands to specifically light up dCas9/sgRNA target-bound gene loci, enabling in situ imaging of fixed cellular gene loci with high specificity and signal-to-noise ratio. In combination with a multiround branching strategy, we successfully detected nonrepetitive gene regions using a single sgRNA. As an intensity-codable and orthogonal probe system, CasSABER enables the adjustable amplification of local signals in fixed cells, resulting in the simultaneous visualization of multicopy and single-copy gene loci with similar fluorescence intensity. Owing to avoiding the complexity of controlling in situ mutistep enzymatic reactions, CasSABER shows good reliability, sensitivity, and ease of implementation, providing a rapid and cost-effective molecular toolkit for studying multigene interaction in fundamental research and gene diagnosis.
Subject(s)
Genetic Loci , RNA, Guide, CRISPR-Cas Systems , Reproducibility of Results , Molecular Probes , FluorescenceABSTRACT
Precise killing of tumor cells without affecting surrounding normal cells is a challenge. Mitochondrial DNA (mtDNA) mutations, a common genetic variant in cancer, can directly affect metabolic homeostasis, serving as an ideal regulatory switch for precise tumor therapy. Here, we designed a mutation-induced drug release system (MIDRS), using the single-nucleotide variation (SNV) recognition ability and trans-cleavage activity of Cas12a to convert tumor-specific mtDNA mutations into a regulatory switch for intracellular drug release, realizing precise tumor cell killing. Using Ce6 as a model drug, MIDRS enabled organelle-level photodynamic therapy, triggering innate and adaptive immunity simultaneously. In vivo evaluation showed that MIDRSMT could identify tumor tissue carrying SNVs in mtDNA in unilateral, bilateral, and heterogeneous tumor models, producing an excellent antitumor effect (~82.6%) without affecting normal cells and thus resulting in a stronger systemic antitumor immune response. Additionally, MIDRS was suitable for genotype-specific precision drug release of chemotherapeutic drugs. This strategy holds promise for mutation-specific personalized tumor treatment approaches.
Subject(s)
DNA, Mitochondrial , Mitochondria , Drug Liberation , Mutation , Mitochondria/genetics , DNA, Mitochondrial/genetics , GenotypeABSTRACT
Mutations in mitochondrial DNA (mtDNA) play critical roles in many human diseases. In vivo visualization of cells bearing mtDNA mutations is important for resolving the complexity of these diseases, which remains challenging. Here we develop an integrated nano Cas12a sensor (InCasor) and show its utility for efficient imaging of mtDNA mutations in live cells and tumor-bearing mouse models. We co-deliver Cas12a/crRNA, fluorophore-quencher reporters and Mg2+ into mitochondria. This process enables the activation of Cas12a's trans-cleavage by targeting mtDNA, which efficiently cleave reporters to generate fluorescent signals for robustly sensing and reporting single-nucleotide variations (SNVs) in cells. Since engineered crRNA significantly increase Cas12a's sensitivity to mismatches in mtDNA, we can identify tumor tissue and metastases by visualizing cells with mutant mtDNAs in vivo using InCasor. This CRISPR imaging nanoprobe holds potential for applications in mtDNA mutation-related basic research, diagnostics and gene therapies.