Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Microbiol Resour Announc ; 13(4): e0121323, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38488371

ABSTRACT

Brucellosis remains a significant zoonotic disease, with Brucella melitensis maintaining endemicity in Middle Eastern nations. This study presents the draft genome sequencing of an Iraqi B. melitensis strain, representing a crucial step in monitoring virulence, antimicrobial resistance, and exploring the diversity and evolution of the Brucella genus.

2.
Front Biosci (Landmark Ed) ; 29(6): 238, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38940045

ABSTRACT

BACKGROUND: Hormone receptors exert their function through binding with their ligands, which results in cellular signaling activation mediated by genomic or non-genomic mechanisms. The intrinsic molecular communication of tick Rhipicephalus microplus and its host Bos taurus comprises an endocrine regulation involving hormones. In the present study, we performed a molecular and in silico analysis of a Membrane Associated Progesterone Receptor in R. microplus (RmMAPRC). METHODS: The RmMAPRC protein sequence was analyzed with bioinformatics tools, and its structure was characterized by three-dimensional (3D) modeling and molecular docking. A semi-quantitative reverse transcription and polymerase chain reaction (sqRT-PCR) assessed the RmMAPRC gene presence and relative expression in tick organs and embryonic cells. RESULTS: RmMAPRC relative expression in salivary glands, ovaries, and embryonic cells showed overexpression of 3%, 13%, and 24%, respectively. Bioinformatic analysis revealed that RmMAPRC corresponded to a Progesterone Receptor Membrane Component 1 (RmPGRMC1) of ~23.7 kDa, with an N-terminal transmembrane domain and a C-terminal Cytochrome b5-like heme/steroid binding domain. The docking results suggest that RmPGRMC1 could bind to progesterone (P4), some progestins, and P4 antagonists. The phylogenetic reconstruction showed that Rhipicephalus spp. MAPRC receptors were clustered in a clade that includes R. appendiculatus, R. sanguineus, and R. microplus (RmMAPRC), and mammals and helminths MAPRC receptors clustered in two separated clades away from ticks. CONCLUSIONS: The presence of RmPGRMC1 highlights the importance of transregulation as a conserved adaptive mechanism that has succeeded for arthropod parasites, making it a target for tick control.


Subject(s)
Progesterone , Receptors, Progesterone , Rhipicephalus , Animals , Rhipicephalus/metabolism , Rhipicephalus/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Progesterone/metabolism , Cattle , Molecular Docking Simulation , Host-Parasite Interactions , Female , Amino Acid Sequence , Protein Binding , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL