Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38339851

ABSTRACT

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Subject(s)
Air Pollutants , Air Pollution , Stomach Neoplasms , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Nitrogen Dioxide/adverse effects , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology , Incidence , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis
2.
Eur J Epidemiol ; 39(8): 925-942, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802612

ABSTRACT

INTRODUCTION: Nitrate and nitrite are naturally occurring in both plant- and animal-sourced foods, are used as additives in the processing of meat, and are found in water. There is growing evidence that they exhibit a spectrum of health effects, depending on the dietary source. The aim of the study was to examine source-dependent associations between dietary intakes of nitrate/nitrite and both all-cause and cause-specific mortality. METHODS: In 52,247 participants of the Danish Diet, Cancer and Health Study, associations between source-dependent nitrate and nitrite intakes--calculated using comprehensive food composition and national drinking water quality monitoring databases--and all-cause, cardiovascular disease (CVD)-related, and cancer-related mortality over 27 years were examined using restricted cubic splines within Cox proportional hazards models adjusting for demographic, lifestyle, and dietary confounders. Analyses were stratified by factors hypothesised to influence the formation of carcinogenic N-nitroso compounds (namely, smoking and dietary intakes of vitamin C, vitamin E, folate, and polyphenols). RESULTS: Plant-sourced nitrate intake was inversely associated with all-cause mortality [HRQ5vsQ1: 0.83 (0.80, 0.87)] while higher risks of all-cause mortality were seen for higher intakes of naturally occurring animal-sourced nitrate [1.09 (1.04, 1.14)], additive permitted meat-sourced nitrate [1.19 (1.14, 1.25)], and tap water-sourced nitrate [1.19 (1.14, 1.25)]. Similar source-dependent associations were seen for nitrite and for CVD-related and cancer-related mortality except that naturally occurring animal-sourced nitrate and tap water-sourced nitrate were not associated with cancer-related mortality and additive permitted meat-sourced nitrate was not associated with CVD-related mortality. No clear patterns emerged in stratified analyses. CONCLUSION: Nitrate/nitrite from plant sources are inversely associated while those from naturally occurring animal-sources, additive-permitted meat sources, and tap water-sources are positively associated with mortality.


Subject(s)
Cardiovascular Diseases , Diet , Neoplasms , Nitrates , Proportional Hazards Models , Humans , Nitrates/analysis , Nitrates/adverse effects , Nitrates/administration & dosage , Neoplasms/mortality , Denmark/epidemiology , Male , Middle Aged , Female , Diet/statistics & numerical data , Cardiovascular Diseases/mortality , Aged , Adult , Nitrites/adverse effects , Nitrites/analysis , Nitrites/administration & dosage , Cause of Death , Risk Factors
3.
Environ Res ; 252(Pt 3): 118942, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649012

ABSTRACT

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , Male , Female , Europe/epidemiology , Middle Aged , Aged , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Cohort Studies , Environmental Exposure/adverse effects , Particulate Matter/analysis , Particulate Matter/adverse effects , Adult
4.
Am J Epidemiol ; 192(9): 1499-1508, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37092253

ABSTRACT

Studies suggest a link between particulate matter less than or equal to 2.5 µm in diameter (PM2.5) and amyotrophic lateral sclerosis (ALS), but to our knowledge critical exposure windows have not been examined. We performed a case-control study in the Danish population spanning the years 1989-2013. Cases were selected from the Danish National Patient Registry based on International Classification of Diseases codes. Five controls were randomly selected from the Danish Civil Registry and matched to a case on vital status, age, and sex. PM2.5 concentration at residential addresses was assigned using monthly predictions from a dispersion model. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for confounding. We evaluated exposure to averaged PM2.5 concentrations 12-24 months, 2-6 years, and 2-11 years pre-ALS diagnosis; annual lagged exposures up to 11 years prediagnosis; and cumulative associations for exposure in lags 1-5 years and 1-10 years prediagnosis, allowing for varying association estimates by year. We identified 3,983 cases and 19,915 controls. Cumulative exposure to PM2.5 in the period 2-6 years prediagnosis was associated with ALS (OR = 1.06, 95% CI: 0.99, 1.13). Exposures in the second, third, and fourth years prediagnosis were individually associated with higher odds of ALS (e.g., for lag 1, OR = 1.04, 95% CI: 1.00, 1.08). Exposure to PM2.5 within 6 years before diagnosis may represent a critical exposure window for ALS.


Subject(s)
Air Pollutants , Air Pollution , Amyotrophic Lateral Sclerosis , Humans , Case-Control Studies , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/etiology , Risk Factors , Particulate Matter/adverse effects , Particulate Matter/analysis , Denmark/epidemiology , Environmental Exposure/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects
5.
Br J Cancer ; 129(4): 656-664, 2023 09.
Article in English | MEDLINE | ID: mdl-37420001

ABSTRACT

BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.


Subject(s)
Air Pollutants , Air Pollution , Brain Neoplasms , Ozone , Humans , Particulate Matter/adverse effects , Nitrogen Dioxide , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Brain Neoplasms/epidemiology , Brain Neoplasms/etiology , Air Pollutants/adverse effects
6.
Eur J Epidemiol ; 38(1): 59-69, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36592285

ABSTRACT

PURPOSE: Expected beneficial health effects is a major reason why people purchase organically produced foods, although the existing evidence is limited. We investigated if organic food consumption, overall and by specific food groups, is associated with the incidence of cancer. METHODS: We used data from the Danish Diet, Cancer and Health cohort. Organic food consumption was reported for vegetables, fruits, dairy products, eggs, meat, and bread and cereal products. Consumption was summarized into an overall organic food score, evaluated as a continuous variable and in categories specified as never, low, medium, and high consumption. We followed 41,928 participants for a median of 15 years, during which 9,675 first cancer cases were identified in the Danish Cancer Registry. We used cox proportional hazard models adjusted for sociodemographic and lifestyle variables to estimate associations between organic food consumption and cancer incidence. RESULTS: No association was observed between intakes of organic foods and incidence of overall cancer. When compared to never eating organic foods, overall organic food consumption was associated with a lower incidence of stomach cancer (low: HR = 0.50, 95% CI: 0.32-0.78, medium: HR = 0.50, 95% CI: 0.32-0.80, high: HR = 0.54, 95% CI: 0.27-1.07, p-trend = 0.09), and higher incidence of non-Hodgkin lymphoma (low: HR = 1.45, 95% CI: 1.01-2.10, medium: HR = 1.35, 95% CI: 0.93-1.96, high: HR = 1.97, 95% CI: 1.28-3.04, p-trend = 0.05). Similar patterns were observed for the specific food groups. CONCLUSION: Our study does not support an association between organic food consumption and incidence of overall cancer. The scarce existing literature shows conflicting results with risk of specific cancers.


Subject(s)
Food, Organic , Neoplasms , Humans , Incidence , Prospective Studies , Diet/adverse effects , Neoplasms/epidemiology , Neoplasms/etiology , Vegetables , Denmark/epidemiology , Risk Factors
7.
Environ Res ; 216(Pt 3): 114740, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36356668

ABSTRACT

Air pollution with particulate matter is an established lung carcinogen. Studies have suggested an association with breast cancer, but the evidence is inconsistent. METHODS: From nationwide registers, we identified all breast cancer cases (n = 55 745) in Denmark between 2000 and 2014. We matched one control for each case on age and year of birth. We used a multi-scale dispersion model to estimate outdoor concentrations of particulate matter <2.5 µm (PM2.5), elemental carbon (EC) and nitrogen dioxide (NO2) as time-weighted average over all addresses up to 20 years prior to diagnosis. We calculated odds ratios (OR) and 95% confidence intervals (CI) by conditional logistic regression with adjustment for marital status, educational level, occupational status, personal income, region of origin, medication and area-level socio-economic indicators. RESULTS: A 10 µg/m3 higher PM2.5 was associated with an OR for breast cancer of 1.21 (95% CI: 1.11-1.33). The corresponding ORs for EC (per 1 µg/m3) and NO2 (per 10 µg/m3) were 1.03 (95% CI: 1.00-1.07) and 1.03 (95% CI: 1.01-1.06), respectively. In multi-pollutant models, the OR for PM2.5 changed only little, whereas ORs for EC or NO2 approached the null. In an analysis of persons below 55 years, PM2.5 was associated with an OR of 1.32 (95% CI: 1.09-1.60) per 10 µg/m3 increase. CONCLUSION: We found evidence of an association between the investigated air pollutants and breast cancer, especially PM2.5. There were indications that the association differed by age at diagnosis. We were not able to include all potential confounders and thus, results should be interpreted with caution.


Subject(s)
Air Pollutants , Air Pollution , Breast Neoplasms , Female , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Carbon/analysis , Case-Control Studies , Denmark/epidemiology , Environmental Exposure/analysis , Nitrogen Dioxide/analysis , Particulate Matter/analysis
8.
Environ Res ; 217: 114795, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36402187

ABSTRACT

BACKGROUND: Some studies have found transportation noise to be associated with higher diabetes risk. This includes studies based on millions of participants, relying entirely on register-based confounder adjustment, which raises concern about residual lifestyle confounding. We aimed to investigate associations between noise and type 2 diabetes (T2D), including investigation of effects of increasing confounder adjustment for register-data and lifestyle. METHODS: In a cohort of 286,151 participants randomly selected across Denmark in 2010-2013 and followed up until 2017, we identified 7574 incident T2D cases. Based on residential address-history for all participants linked with exposure assessment of high spatial resolution, we calculated 10-year time-weighted mean road and railway noise at the most (LdenMax) and least (LdenMin) exposed façades and air pollution (PM2.5). We used Cox models to calculate hazard ratios (HR) with increasing adjustment for individual- and area-level register-based sociodemographic covariates, self-reported lifestyle and air pollution. RESULTS: We found that a 10 dB increase in 10-year mean road LdenMin was associated with HRs (95% CI) of 1.06 (1.02-1.10) after adjustment for age, sex and year, 1.08 (1.04-1.13) after further adjustment for register-based sociodemographic covariates, 1.07 (1.03-1.12) after further lifestyle adjustment (e.g. smoking, diet and alcohol) and 1.06 (1.02-1.11) after further PM2.5 adjustment. For road LdenMax, the corresponding HRs were 1.07 (1.04-1.10), 1.05 (1.02-1.08), 1.04 (1.01-1.07) and 1.03 (1.00-1.06). Railway noise was associated with HRs of 1.04 (0.98-1.11) for LdenMax and 1.02 (0.92-1.12) for LdenMin after adjustment for sociodemographic and lifestyle covariates and PM2.5. CONCLUSIONS: Long-term exposure to road traffic noise was associated with T2D, which together with previous literature indicates that T2D should be considered when calculating health impacts of noise. After sociodemographic adjustment, further lifestyle adjustment only changed HRs slightly, suggesting that large register-based studies with adjustment for key sociodemographic covariates can produce reliable results.


Subject(s)
Diabetes Mellitus, Type 2 , Environmental Exposure , Noise, Transportation , Humans , Cohort Studies , Denmark/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Environmental Exposure/adverse effects , Noise, Transportation/adverse effects
9.
Environ Res ; 229: 115905, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37086881

ABSTRACT

Air pollution is associated with increased risk of myocardial infarction (MI), but it is unresolved to what extent the association is modified by factors such as socioeconomic status, comorbidities, financial stress, residential green space, or road traffic noise. We formed a cohort of all (n = 1,964,702) Danes, aged 50-85 years, with 65,311 cases of MI during the followed-up period 2005-2017. For all participants we established residential five-year running average exposure to particulate matter <2.5 µm (PM2.5), ultrafine particles (UFP, <0.1 µm), elemental carbon (EC) and nitrogen dioxide (NO2). We evaluated risk in population strata, using Aalen additive hazards models to estimate absolute risk and Cox proportional hazards models to estimate relative risk of MI with 95% confidence intervals (CI). PM2.5 and the other pollutant were associated with MI. Lower education and lower income were associated with higher absolute risks of MI from air pollution, whereas no clear effect modification was apparent for relative risk estimates. For example, 5 µg/m3 higher PM2.5 was associated with HR for MI of 1.16 (95% CI: 1.10-1.22) among those with only mandatory education and 1.13 (95% CI: 1.03-1.24) among those with long education. The corresponding rate differences per 100,000 person years were 243 (95% CI: 216-271) and 358 (95% CI: 338-379), respectively. Higher level of comorbidity was consistently across all four pollutants associated with both higher absolute and relative risk of MI. In conclusion, people with comorbid conditions or of lower SES appeared more vulnerable to long-term exposure to air pollution and more cases of MI may be prevented by focused interventions in these groups.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Myocardial Infarction , Humans , Cohort Studies , Air Pollutants/analysis , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Myocardial Infarction/chemically induced , Myocardial Infarction/epidemiology
10.
Environ Res ; 220: 115179, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36584852

ABSTRACT

BACKGROUND: Air pollution is a well-recognized risk factor for cardiovascular disease. However, the mechanistic pathways underlying the association are not completely understood. Hence, further studies are required to shed light on potential mechanisms, through which air pollution may affect the development from subclinical to clinical cardiovascular disease. OBJECTIVES: To investigate associations between short-term exposure to air pollution and high-density lipoprotein (HDL), non-high density lipoprotein (non-HDL), systolic and diastolic blood pressure. METHODS: The study was conducted among 32,851 Danes from the Diet, Cancer and Health - Next Generations cohort, who had a blood sample taken and blood pressure measured. We measured HDL and non-HDL in the blood samples. We modelled exposure to fine particulate matter (PM2.5), ultrafine particles (UFP), elemental carbon (EC) and nitrogen dioxide (NO2) in time-windows from 24 h up to 90 days before blood sampling. Pollutants were modelled as total air pollution from all sources, and apportioned into contributions from non-traffic and traffic sources. We analyzed data using linear and logistic regression, with adjustment for socio-economic and lifestyle factors. RESULTS: Air pollution exposure over 24 h to 30 days was generally adversely associated with lipid profile and blood pressure, e.g. for 30-day UFP-exposure, adjusted ß-estimates were: -0.025 (-0.043; -0.006) for HDL, 0.086 (0.042; 0.130) for non-HDL, 2.45 (1.70; 3.11) for systolic and 1.56 (1.07; 20.4) for diastolic blood pressure, per 10,000 particles/cm3. The strongest associations were found for the non-traffic components of air pollution, and among those who were overweight/obese. DISCUSSION: In this large study of air pollution and lipid levels and blood pressure, we found that 24-h to 30-day PM2.5, UFP, EC and NO2 concentrations were generally adversely associated with lipid profile and blood pressure, two important cardiovascular risk factors. The study suggests potential pathways, through which air pollution could affect the development of cardiovascular disease.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Humans , Adult , Air Pollutants/toxicity , Air Pollutants/analysis , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , Blood Pressure , Cardiovascular Diseases/chemically induced , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Lipids , Environmental Exposure
11.
Environ Res ; 239(Pt 1): 117230, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37806476

ABSTRACT

BACKGROUND: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 µg/m³ NO2, 1.04 (0.82, 1.33) per 5 µg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 µg/m³ O3. CONCLUSIONS: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.


Subject(s)
Air Pollutants , Air Pollution , Multiple Myeloma , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Multiple Myeloma/chemically induced , Multiple Myeloma/epidemiology , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , Particulate Matter/analysis
12.
Am J Respir Crit Care Med ; 205(12): 1429-1439, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35258439

ABSTRACT

Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 µg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.


Subject(s)
Air Pollutants , Air Pollution , Influenza, Human , Pneumonia , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Dioxide/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis
13.
Br J Cancer ; 126(10): 1499-1507, 2022 06.
Article in English | MEDLINE | ID: mdl-35173304

ABSTRACT

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.


Subject(s)
Air Pollutants , Air Pollution , Urinary Bladder Neoplasms , Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Female , Humans , Incidence , Male , Nitrogen Dioxide , Particulate Matter/adverse effects , Rare Diseases , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/etiology , Zinc
14.
Epidemiology ; 33(2): 185-192, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34860726

ABSTRACT

BACKGROUND: Epidemiologic studies suggest cadmium exposure is associated with cardiovascular disease risk, including heart failure. However, prior findings may be influenced by tobacco smoking, a dominant source of cadmium exposure and risk factor for heart failure. The present study leverages up to 20 years of follow-up in the Danish Diet, Cancer and Health cohort to examine the relationship between urinary cadmium and incident heart failure among people who never smoked. METHODS: Between 1993 and 1997, 19,394 never-smoking participants (ages 50-64 years) enrolled and provided a urine sample. From this sample, we randomly selected a subcohort of 600 men and 600 women and identified 958 incident heart failure cases occurring between baseline and 2015. Using a case-cohort approach, we estimated adjusted hazard ratios (aHR) for heart failure in Cox proportional hazards models with age as the time scale. RESULTS: Participants had relatively low concentrations of urinary cadmium, as expected for never smokers (median = 0.20; 25th, 75th = 0.13, 0.32 µg cadmium/g creatinine). In adjusted models, we found that higher urinary cadmium was associated with a higher rate of incident heart failure overall (aHR = 1.1 per interquartile range difference [95% CI = 1.0, 1.2). In sex-stratified analyses, the association seemed restricted to men (aHR = 1.5 [95% CI = 1.2, 1.9]). CONCLUSIONS: In this cohort of people who never smoked tobacco, environmental cadmium was positively associated with incident heart failure, especially among men.


Subject(s)
Cadmium , Heart Failure , Cadmium/analysis , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Female , Heart Failure/epidemiology , Humans , Male , Middle Aged , Risk Factors , Smokers
15.
Epidemiology ; 33(6): 757-766, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35944145

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Limited evidence suggests ALS diagnosis may be associated with air pollution exposure and specifically traffic-related pollutants. METHODS: In this population-based case-control study, we used 3,937 ALS cases from the Danish National Patient Register diagnosed during 1989-2013 and matched on age, sex, year of birth, and vital status to 19,333 population-based controls free of ALS at index date. We used validated predictions of elemental carbon (EC), nitrogen oxides (NO x ), carbon monoxide (CO), and fine particles (PM 2.5 ) to assign 1-, 5-, and 10-year average exposures pre-ALS diagnosis at study participants' present and historical residential addresses. We used an adjusted Bayesian hierarchical conditional logistic model to estimate individual pollutant associations and joint and average associations for traffic-related pollutants (EC, NO x , CO). RESULTS: For a standard deviation (SD) increase in 5-year average concentrations, EC (SD = 0.42 µg/m 3 ) had a high probability of individual association with increased odds of ALS (11.5%; 95% credible interval [CrI] = -1.0%, 25.6%; 96.3% posterior probability of positive association), with negative associations for NO x (SD = 20 µg/m 3 ) (-4.6%; 95% CrI = 18.1%, 8.9%; 27.8% posterior probability of positive association), CO (SD = 106 µg/m 3 ) (-3.2%; 95% CrI = 14.4%, 10.0%; 26.7% posterior probability of positive association), and a null association for nonelemental carbon fine particles (non-EC PM 2.5 ) (SD = 2.37 µg/m 3 ) (0.7%; 95% CrI = 9.2%, 12.4%). We found no association between ALS and joint or average traffic pollution concentrations. CONCLUSIONS: This study found high probability of a positive association between ALS diagnosis and EC concentration. Further work is needed to understand the role of traffic-related air pollution in ALS pathogenesis.


Subject(s)
Air Pollutants , Air Pollution , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/etiology , Bayes Theorem , Carbon Monoxide/adverse effects , Case-Control Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Oxides/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Vehicle Emissions/analysis , Vehicle Emissions/toxicity
16.
Environ Sci Technol ; 56(13): 9277-9290, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35737879

ABSTRACT

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Humans , Particulate Matter/analysis
17.
Occup Environ Med ; 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35450950

ABSTRACT

OBJECTIVES: To investigate the association between occupational noise exposure and stroke incidence in a pooled study of five Scandinavian cohorts (NordSOUND). METHODS: We pooled and harmonised data from five Scandinavian cohorts resulting in 78 389 participants. We obtained job data from national registries or questionnaires and recoded these to match a job-exposure matrix developed in Sweden, which specified the annual average daily noise exposure in five exposure classes (LAeq8h): <70, 70-74, 75-79, 80-84, ≥85 dB(A). We identified residential address history and estimated 1-year average road traffic noise at baseline. Using national patient and mortality registers, we identified 7777 stroke cases with a median follow-up of 20.2 years. Analyses were conducted using Cox proportional hazards models adjusting for individual and area-level potential confounders. RESULTS: Exposure to occupational noise at baseline was not associated with overall stroke in the fully adjusted models. For ischaemic stroke, occupational noise was associated with HRs (95% CI) of 1.08 (0.98 to 1.20), 1.09 (0.97 to 1.24) and 1.06 (0.92 to 1.21) in the 75-79, 80-84 and ≥85 dB(A) exposure groups, compared with <70 dB(A), respectively. In subanalyses using time-varying occupational noise exposure, we observed an indication of higher stroke risk among the most exposed (≥85 dB(A)), particularly when restricting analyses to people exposed to occupational noise within the last year (HR: 1.27; 95% CI: 0.99 to 1.63). CONCLUSIONS: We found no association between occupational noise and risk of overall stroke after adjustment for confounders. However, the non-significantly increased risk of ischaemic stroke warrants further investigation.

18.
Environ Res ; 212(Pt A): 113180, 2022 09.
Article in English | MEDLINE | ID: mdl-35395236

ABSTRACT

BACKGROUND: The aetiology of most childhood cancers remains poorly understood. We conducted a nationwide register-based case-control study to assess the association between residential road traffic and railway noise exposure and risk of childhood cancers. METHODS: We identified all cases of first cancers diagnosed in children aged 0-19 years in 1985-2013 from the Danish Cancer Registry (N = 3962) and sampled four individually matched (by sex and date of birth) controls per case (N = 14,790) using the Central Population Register. We estimated time-weighted exposure averages of residential road traffic and railway noise at the most (Lden max) and least (Lden min) exposed façades from birth to index-date (for additional analysis: in utero period) based on the individual address history for the respective time windows. We fitted conditional logistic regression models to estimate odds ratios (OR) and their 95% confidence intervals (CI). RESULTS: ORs varied by noise estimate and cancer type, with generally wide CIs mostly including 1.00. We found a tendency of higher ORs with increasing railway and road traffic noise for Hodgkin lymphoma (ORs for railway and road Lden min were 1.63 (95% CI 1.00; 2.66) and 1.14 (95% CI 0.87; 1.48) per 10 dB), as well as a tendency of higher ORs with increasing railway noise for non-Hodgkin lymphoma. For embryonal CNS tumours and astrocytoma and other glioma we observed also some weak suggestions of a positive association. Analysing exposure to traffic noise in utero revealed similar patterns to those of the main analyses. CONCLUSIONS: This nationwide study with minimal risk of bias suggests no strong associations between traffic noise and risk of most childhood cancers. We found however some suggestive evidence for a positive association with Hodgkin lymphoma, non-Hodgkin lymphoma and some CNS tumours. Further research is warranted to confirm these associations in other populations and elucidate the underlying biological mechanisms.


Subject(s)
Neoplasms , Noise, Transportation , Case-Control Studies , Child , Cohort Studies , Denmark/epidemiology , Environmental Exposure , Humans , Neoplasms/epidemiology , Neoplasms/etiology , Noise, Transportation/adverse effects
19.
Environ Res ; 207: 112167, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34619123

ABSTRACT

BACKGROUND: Epidemiological studies have linked transportation noise and cardiovascular diseases, however, atrial fibrillation (AF) has received limited attention. We aimed to investigate the association between transportation noise and AF risk. METHODS: Over the period 1990-2017 we estimated road and railway noise (Lden) at the most and least exposed façades for all residential addresses across Denmark. We estimated time-weighted mean noise exposure for 3.6 million individuals age ≥35 years. Of these, 269,756 incident cases of AF were identified with a mean follow-up of 13.0 years. Analyses were conducted using Cox proportional hazards models with adjustment for individual and area-level sociodemographic covariates and long-term residential air pollution. RESULTS: A 10 dB higher 10-year mean road traffic noise at the most and least exposed façades were associated with incidence rate ratios (IRR) and 95% confidence intervals (CI) for AF of 1.006 (1.001-1.011) and 1.013 (1.007-1.019), respectively. After further adjustment for PM2.5, the IRRs (CIs) were 1.000 (0.995-1.005) and 1.007 (1.000-1.013), respectively. For railway noise, the IRRs per 10 dB increase in 10-year mean exposure were 1.017 (1.007-1.026) and 1.035 (1.021-1.050) for the most and least exposed façades, respectively, and were slightly attenuated when adjusted for PM2.5. Aircraft noise between 55 and 60 dB and ≥60 dB were associated with IRRs of 1.055 (0.996-1.116) and 1.036 (0.931-1.154), respectively, when compared to <45 dB. CONCLUSION: Transportation noise seems to be associated with a small increase in AF risk, especially for exposure at the least exposed façade.


Subject(s)
Atrial Fibrillation , Noise, Transportation , Adult , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Humans , Noise, Transportation/adverse effects
20.
Environ Res ; 211: 113106, 2022 08.
Article in English | MEDLINE | ID: mdl-35304113

ABSTRACT

BACKGROUND: Transportation noise increases the risk of ischemic heart disease (IHD), but few studies have investigated subtypes of IHD, such as myocardial infarction (MI), angina pectoris, or heart failure. We aimed to study whether exposure to road, railway and aircraft noise increased risk for ischemic heart disease (IHD), IHD subtypes, and heart failure in the entire adult Danish population, investigating exposures at both maximum exposed and silent façades of each residence. METHODS: We modelled road, railway, and aircraft noise at the most and least exposed façades for the period 1995-2017 for all addresses in Denmark and calculated 10-year time-weighted running means for 2.5 million individuals age ≥50 years, of whom 122,523 developed IHD and 79,358 developed heart failure during follow-up (2005-2017). Data were analyzed using Cox proportional hazards models, adjusted for individual and area-level sociodemographic covariates and air pollution. RESULTS: We found road traffic noise at the most exposed façade (Lden) to be associated with higher risk of IHD, myocardial infarction (MI), angina pectoris, and heart failure, with hazard ratios (HRs) (95% confidence intervals (CI)) of 1.052 (1.044-1.059), 1.041 (1.032-1.051), 1.095 (1.071-1.119), and 1.039 (1.033-1.045) per 10 dB higher 10-year mean exposure, respectively. These associations followed a near-linear exposure-response relationship and were robust to adjustment for air pollution with PM2.5. Railway noise at the least exposed façade was associated with heart failure (HR 1.28; 95% CI: 1.004-1.053), but not the other outcomes. Exposure to aircraft noise (>45 dB) seemed associated with increased risk for MI and heart failure. CONCLUSIONS: We found road traffic noise and potentially railway and aircraft noise to increase risk of various major cardiovascular outcomes, highlighting the importance of preventive actions towards transportation noise.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Infarction , Myocardial Ischemia , Noise, Transportation , Adult , Angina Pectoris , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cohort Studies , Denmark/epidemiology , Environmental Exposure , Humans , Middle Aged , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Noise, Transportation/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL