Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nat Immunol ; 24(1): 186-199, 2023 01.
Article in English | MEDLINE | ID: mdl-36536106

ABSTRACT

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Pandemics , Adaptive Immunity , Palatine Tonsil , Antibodies, Viral
2.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Article in English | MEDLINE | ID: mdl-30127432

ABSTRACT

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Subject(s)
B-Lymphocytes/physiology , Gastrointestinal Microbiome/immunology , Germinal Center/physiology , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , T-Lymphocytes, Helper-Inducer/physiology , Animals , Autoantibodies/blood , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/genetics , Disease Models, Animal , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Immunity, Humoral/genetics , Immunoglobulin Class Switching/genetics , Immunologic Deficiency Syndromes/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
Nature ; 597(7874): E1, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34373651

ABSTRACT

A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03346-0.

4.
Nature ; 589(7840): 131-136, 2021 01.
Article in English | MEDLINE | ID: mdl-33239787

ABSTRACT

The liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut1. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule. This differs from lymphoid organs, in which immune cells adopt spatially biased positions to promote effective host defence2,3. Here we used quantitative multiplex imaging, genetic perturbations, transcriptomics, infection-based assays and mathematical modelling to reassess the relationship between the localization of immune cells in the liver and host protection. We found that myeloid and lymphoid resident immune cells concentrate around periportal regions. This asymmetric localization was not developmentally controlled, but resulted from sustained MYD88-dependent signalling induced by commensal bacteria in liver sinusoidal endothelial cells, which in turn regulated the composition of the pericellular matrix involved in the formation of chemokine gradients. In vivo experiments and modelling showed that this immune spatial polarization was more efficient than a uniform distribution in protecting against systemic bacterial dissemination. Together, these data reveal that liver sinusoidal endothelial cells sense the microbiome, actively orchestrating the localization of immune cells, to optimize host defence.


Subject(s)
Gastrointestinal Microbiome/immunology , Liver/immunology , Liver/microbiology , Symbiosis/immunology , Animals , Bacteria/immunology , Bacteria/isolation & purification , Cell Separation , Chemokine CXCL9/immunology , Endothelial Cells/cytology , Endothelial Cells/immunology , Female , Humans , Kupffer Cells/cytology , Kupffer Cells/immunology , Kupffer Cells/metabolism , Liver/blood supply , Liver/cytology , Lymphocytes/immunology , Male , Mice , Models, Immunological , Molecular Imaging , Myeloid Cells/immunology , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Symbiosis/genetics , Transcriptome
5.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Article in English | MEDLINE | ID: mdl-37468619

ABSTRACT

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Subject(s)
Antibodies , Community Resources , Humans , Reproducibility of Results , Diagnostic Imaging
6.
Blood ; 143(12): 1069-1079, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38194685

ABSTRACT

ABSTRACT: Follicular lymphoma (FL) is a generally incurable malignancy that originates from developmentally blocked germinal center B cells residing, primarily, within lymph nodes (LNs). During the long natural history of FL, malignant B cells often disseminate to multiple LNs and can affect virtually any organ. Nonmalignant LNs are highly organized structures distributed throughout the body, in which they perform functions critical for host defense. In FL, the malignant B cells "re-educate" the lymphoid environment by altering the phenotype, distribution, and abundance of other cells such as T cells, macrophages, and subsets of stromal cells. Consequently, dramatic anatomical changes occur and include alterations in the number, shape, and size of neoplastic follicles with an accompanying attenuation of the T-cell zone. Ongoing and dynamic interactions between FL B cells and the tumor microenvironment (TME) result in significant clinical heterogeneity observed both within and across patients. Over time, FL evolves into pathological variants associated with distinct outcomes, ranging from an indolent disease to more aggressive clinical courses with early death. Given the importance of both cell-intrinsic and -extrinsic factors in shaping disease progression and patient survival, comprehensive examination of FL tumors is critical. Here, we describe the cellular composition and architecture of normal and malignant human LNs and provide a broad overview of emerging technologies for deconstructing the FL TME at single-cell and spatial resolution. We additionally discuss the importance of capturing samples at landmark time points as well as longitudinally for clinical decision-making.


Subject(s)
Lymphoma, B-Cell , Lymphoma, Follicular , Humans , B-Lymphocytes/pathology , Germinal Center/pathology , Lymphoma, B-Cell/pathology , Lymphoma, Follicular/pathology , Tumor Microenvironment
7.
Immunol Rev ; 306(1): 8-24, 2022 03.
Article in English | MEDLINE | ID: mdl-34918351

ABSTRACT

A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing. Such pre-organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.


Subject(s)
Immune System , Signal Transduction , Diagnostic Imaging , Humans , Mathematics
8.
Nat Methods ; 19(3): 284-295, 2022 03.
Article in English | MEDLINE | ID: mdl-34811556

ABSTRACT

Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed. Though these technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this Perspective, we provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers.


Subject(s)
Antibodies , Cell Communication , Diagnostic Imaging
10.
Proc Natl Acad Sci U S A ; 117(52): 33455-33465, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33376221

ABSTRACT

The diverse composition of mammalian tissues poses challenges for understanding the cell-cell interactions required for organ homeostasis and how spatial relationships are perturbed during disease. Existing methods such as single-cell genomics, lacking a spatial context, and traditional immunofluorescence, capturing only two to six molecular features, cannot resolve these issues. Imaging technologies have been developed to address these problems, but each possesses limitations that constrain widespread use. Here we report a method that overcomes major impediments to highly multiplex tissue imaging. "Iterative bleaching extends multiplexity" (IBEX) uses an iterative staining and chemical bleaching method to enable high-resolution imaging of >65 parameters in the same tissue section without physical degradation. IBEX can be employed with various types of conventional microscopes and permits use of both commercially available and user-generated antibodies in an "open" system to allow easy adjustment of staining panels based on ongoing marker discovery efforts. We show how IBEX can also be used with amplified staining methods for imaging strongly fixed tissues with limited epitope retention and with oligonucleotide-based staining, allowing potential cross-referencing between flow cytometry, cellular indexing of transcriptomes and epitopes by sequencing, and IBEX analysis of the same tissue. To facilitate data processing, we provide an open-source platform for automated registration of iterative images. IBEX thus represents a technology that can be rapidly integrated into most current laboratory workflows to achieve high-content imaging to reveal the complex cellular landscape of diverse organs and tissues.


Subject(s)
Cells/metabolism , Optical Imaging/methods , Animals , Fluorescent Dyes/metabolism , Humans , Image Processing, Computer-Assisted , Immunization , Lymph Nodes/diagnostic imaging , Mice , Organ Specificity , Phenotype
11.
J Cell Sci ; 133(5)2020 03 06.
Article in English | MEDLINE | ID: mdl-32144196

ABSTRACT

A hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs). Beyond housing these cell types in one location, LNs are highly organized structures consisting of pre-positioned cells within well-defined microanatomical niches. In this Cell Science at a Glance article and accompanying poster, we outline the key cellular populations and components of the LN microenvironment that are present at steady state and chronicle the dynamic changes in these elements following an immune response. This review highlights the LN as a staging ground for both innate and adaptive immune responses, while providing an elegant example of how structure informs function.


Subject(s)
Antigens , Lymph Nodes , Animals , Immunity
12.
J Immunol ; 197(10): 3884-3893, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27798160

ABSTRACT

T follicular helper (Tfh) cells are a subset of CD4+ T lymphocytes that promote the development of humoral immunity. Although the triggers required for the differentiation of the other major Th subsets are well defined, those responsible for Tfh cell responses are still poorly understood. We determined that mice immunized with peptide or protein Ags emulsified in IFA or related water-in-oil adjuvants develop a highly polarized response in which the majority of the Ag-specific CD4+ T cells are germinal center-homing CXCR5+Bcl6+ Tfh cells. Despite the absence of exogenous microbial pathogen-associated molecular patterns, the Tfh cell responses observed were dependent, in part, on MyD88. Importantly, in addition to IL-6, T cell-intrinsic type I IFN signaling is required for optimal Tfh cell polarization. These findings suggest that water-in-oil adjuvants promote Tfh cell-dominated responses by triggering endogenous alarm signals that, in turn, induce type I IFN-dependent differentiation pathway functioning in T cells.


Subject(s)
Adjuvants, Immunologic/chemistry , Interferon Type I/metabolism , Interleukin-6/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens/immunology , Cell Differentiation , Germinal Center/immunology , Immunity, Humoral , Immunization , Interferon Type I/immunology , Interleukin-6/immunology , Lymphocyte Activation , Mice , Oils , Peptides/immunology , Receptors, CXCR5/metabolism , Signal Transduction , Water
13.
PLoS Pathog ; 11(2): e1004637, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25658939

ABSTRACT

Malaria infection begins when a female Anopheles mosquito injects Plasmodium sporozoites into the skin of its host during blood feeding. Skin-deposited sporozoites may enter the bloodstream and infect the liver, reside and develop in the skin, or migrate to the draining lymph nodes (DLNs). Importantly, the DLN is where protective CD8(+) T cell responses against malaria liver stages are induced after a dermal route of infection. However, the significance of parasites in the skin and DLN to CD8(+) T cell activation is largely unknown. In this study, we used genetically modified parasites, as well as antibody-mediated immobilization of sporozoites, to determine that active sporozoite migration to the DLNs is required for robust CD8(+) T cell responses. Through dynamic in vivo and static imaging, we show the direct uptake of parasites by lymph-node resident DCs followed by CD8(+) T cell-DC cluster formation, a surrogate for antigen presentation, in the DLNs. A few hours after sporozoite arrival to the DLNs, CD8(+) T cells are primed by resident CD8α(+) DCs with no apparent role for skin-derived DCs. Together, these results establish a critical role for lymph node resident CD8α(+) DCs in CD8(+) T cell priming to sporozoite antigens while emphasizing a requirement for motile sporozoites in the induction of CD8(+) T cell-mediated immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Malaria/immunology , Sporozoites/immunology , Adoptive Transfer , Animals , Antigen Presentation/immunology , Antigens, Protozoan/immunology , Cell Separation , Dendritic Cells/immunology , Flow Cytometry , Immunity, Cellular/immunology , Lymph Nodes/parasitology , Mice , Microscopy, Confocal , Plasmodium berghei/immunology , Reverse Transcriptase Polymerase Chain Reaction
14.
J Infect Dis ; 210(9): 1508-16, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24823625

ABSTRACT

It is well established that immunization with attenuated malaria sporozoites induces CD8(+) T cells that eliminate parasite-infected hepatocytes. Liver memory CD8(+) T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8(+) T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8(+) T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8(+) T cells in the liver.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/physiology , Liver Diseases, Parasitic/immunology , Receptors, CXCR/physiology , Adoptive Transfer , Animals , Female , Flow Cytometry , Malaria/immunology , Malaria/parasitology , Male , Mice, Inbred C57BL , Mice, Transgenic , Plasmodium berghei/immunology , Receptors, CXCR6
15.
PLoS Pathog ; 8(10): e1002965, 2012.
Article in English | MEDLINE | ID: mdl-23093936

ABSTRACT

The mosquito is the obligate vector for malaria transmission. To complete its development within the mosquito, the malaria parasite Plasmodium must overcome the protective action of the mosquito innate immune system. Here we report on the involvement of the Anopheles gambiae orthologue of a conserved component of the vertebrate immune system, LPS-induced TNFα transcription factor (LITAF), and its role in mosquito anti-Plasmodium immunity. An. gambiae LITAF-like 3 (LL3) expression is up-regulated in response to midgut invasion by both rodent and human malaria parasites. Silencing of LL3 expression greatly increases parasite survival, indicating that LL3 is part of an anti-Plasmodium defense mechanism. Electrophoretic mobility shift assays identified specific LL3 DNA-binding motifs within the promoter of SRPN6, a gene that also mediates mosquito defense against Plasmodium. Further experiments indicated that these motifs play a direct role in LL3 regulation of SRPN6 expression. We conclude that LL3 is a transcription factor capable of modulating SRPN6 expression as part of the mosquito anti-Plasmodium immune response.


Subject(s)
Anopheles/immunology , Host-Parasite Interactions , Insect Proteins/metabolism , Insect Vectors/immunology , Plasmodium/immunology , Transcription Factors/metabolism , Animals , Anopheles/genetics , Anopheles/parasitology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Insect Proteins/genetics , Insect Vectors/parasitology , Malaria/transmission , Plasmodium/genetics , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering , Transcription Factors/genetics
16.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38168288

ABSTRACT

Spatial patterns of cells and other biological elements drive both physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data. SPACE is compatible with any data collection modality that records values (i.e., categorical cell/structure types or quantitative expression levels) at fixed spatial coordinates (i.e., 2d pixels or 3d voxels). SPACE detects not only broad patterns of co-occurrence but also context-dependent associations, quantitative gradients and orientations, and other organizational complexities. Via a robust information theoretic framework, SPACE explores all possible ensembles of tissue elements - single elements, pairs, triplets, and so on - and ranks the most strongly patterned ensembles. For single images, rankings reflect patterns that differ from random assortment. For sets of images, rankings reflect patterns that differ across sample groups (e.g., genotypes, treatments, timepoints, etc.). Further tools then thoroughly characterize the nature of each pattern for intuitive interpretation. We validate SPACE and demonstrate its advantages using murine lymph node images for which ground truth has been defined. We then use SPACE to detect new patterns across varied datasets, including tumors and tuberculosis granulomas.

17.
Cancer Cell ; 42(3): 444-463.e10, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38428410

ABSTRACT

Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.


Subject(s)
Lymphoma, Follicular , Humans , B-Lymphocytes , Lymphoma, Follicular/genetics , Multiomics , Prospective Studies , Recurrence , Tumor Microenvironment , Clinical Trials as Topic
18.
ArXiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38351940

ABSTRACT

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

19.
PLoS Pathog ; 7(3): e1001318, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21445239

ABSTRACT

Malaria-protective CD8+ T cells specific for the circumsporozoite (CS) protein are primed by dendritic cells (DCs) after sporozoite injection by infected mosquitoes. The primed cells then eliminate parasite liver stages after recognizing the CS epitopes presented by hepatocytes. To define the in vivo processing of CS by DCs and hepatocytes, we generated parasites carrying a mutant CS protein containing the H-2K(b) epitope SIINFEKL, and evaluated the T cell response using transgenic and mutant mice. We determined that in both DCs and hepatocytes CS epitopes must reach the cytosol and use the TAP transporters to access the ER. Furthermore, we used endosomal mutant (3d) and cytochrome c treated mice to address the role of cross-presentation in the priming and effector phases of the T cell response. We determined that in DCs, CS is cross-presented via endosomes while, conversely, in hepatocytes protein must be secreted directly into the cytosol. This suggests that the main targets of protective CD8+ T cells are parasite proteins exported to the hepatocyte cytosol. Surprisingly, however, secretion of the CS protein into hepatocytes was not dependent upon parasite-export (Pexel/VTS) motifs in this protein. Together, these results indicate that the presentation of epitopes to CD8+ T cells follows distinct pathways in DCs when the immune response is induced and in hepatocytes during the effector phase.


Subject(s)
Antigen Presentation/immunology , Antigens, Protozoan/immunology , Dendritic Cells/immunology , Hepatocytes/immunology , Malaria/immunology , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Animals , Antigen Presentation/genetics , Antigens, Protozoan/genetics , CD8-Positive T-Lymphocytes/immunology , Epitopes/genetics , Epitopes/immunology , Female , Malaria/genetics , Mice , Mice, Transgenic , Plasmodium berghei/genetics , Protozoan Proteins/genetics
20.
Am J Physiol Regul Integr Comp Physiol ; 304(4): R267-77, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23255589

ABSTRACT

Recent findings indicate that TLR3 polymorphisms increase susceptibility to enteroviral myocarditis and inflammatory dilated cardiomyopathy (iDCM) in patients. TLR3 signaling has been found to inhibit coxsackievirus B3 (CVB3) replication and acute myocarditis in mouse models, but its role in the progression from myocarditis to iDCM has not been previously investigated. In this study we found that TLR3 deficiency increased acute (P = 5.9 × 10(-9)) and chronic (P = 6.0 × 10(-7)) myocarditis compared with WT B6.129, a mouse strain that is resistant to chronic myocarditis and iDCM. Using left ventricular in vivo hemodynamic assessment, we found that TLR3-deficient mice developed progressively worse chronic cardiomyopathy. TLR3 deficiency significantly increased viral replication in the heart during acute myocarditis from day 3 through day 12 after infection, but infectious virus was not detected in the heart during chronic disease. TLR3 deficiency increased cytokines associated with a T helper (Th)2 response, including IL-4 (P = 0.03), IL-10 (P = 0.008), IL-13 (P = 0.002), and TGF-ß(1) (P = 0.005), and induced a shift to an immunoregulatory phenotype in the heart. However, IL-4-deficient mice had improved heart function during acute CVB3 myocarditis by echocardiography and in vivo hemodynamic assessment compared with wild-type mice, indicating that IL-4 impairs cardiac function during myocarditis. IL-4 deficiency increased regulatory T-cell and macrophage populations, including FoxP3(+) T cells (P = 0.005) and Tim-3(+) macrophages (P = 0.004). Thus, TLR3 prevents the progression from myocarditis to iDCM following CVB3 infection by reducing acute viral replication and IL-4 levels in the heart.


Subject(s)
Cardiomyopathy, Dilated/virology , Coxsackievirus Infections/immunology , Enterovirus B, Human/physiology , Interleukin-4/immunology , Myocarditis/virology , Toll-Like Receptor 3/immunology , Acute Disease , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/immunology , Chronic Disease , Coxsackievirus Infections/genetics , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Humans , Interleukin-4/analysis , Macrophages/immunology , Macrophages/virology , Male , Mice , Mice, Inbred BALB C , Myocarditis/genetics , Myocarditis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Toll-Like Receptor 3/genetics , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL