Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pathol ; 259(4): 455-467, 2023 04.
Article in English | MEDLINE | ID: mdl-36695554

ABSTRACT

The aggressive basal/squamous (Ba/Sq) bladder cancer (BLCA) subtype is often diagnosed at the muscle-invasive stage and can progress to the sarcomatoid variant. Identification of molecular changes occurring during progression from non-muscle-invasive BLCA (NMIBC) to Ba/Sq muscle-invasive BLCA (MIBC) is thus challenging in human disease. We used the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model of Ba/Sq MIBC to study longitudinally the molecular changes leading to the Ba/Sq phenotype and to the sarcomatoid variant using IHC and microdissection followed by RNA-seq at all stages of progression. A shift to the Ba/Sq phenotype started in early progression stages. Pathway analysis of gene clusters with coordinated expression changes revealed Shh signaling loss and a shift from fatty acid metabolism to glycolysis. An upregulated cluster, appearing early in carcinogenesis, showed relevance to human disease, identifying NMIBC patients at risk of progression. Similar to the human counterpart, sarcomatoid BBN tumors displayed a Ba/Sq phenotype and epithelial-mesenchymal transition (EMT) features. An EGFR/FGFR1 signaling switch occurred with sarcomatoid dedifferentiation and correlated with EMT. BLCA cell lines with high EMT were the most sensitive to FGFR1 knockout and resistant to EGFR knockout. Taken together, these findings provide insights into the underlying biology of Ba/Sq BLCA progression and sarcomatoid dedifferentiation with potential clinical implications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Squamous Cell , Sarcoma , Soft Tissue Neoplasms , Urinary Bladder Neoplasms , Animals , Mice , Humans , Urinary Bladder , Urinary Bladder Neoplasms/genetics , Carcinogenesis/genetics , ErbB Receptors
2.
J Med Genet ; 61(1): 78-83, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37541786

ABSTRACT

About half of the human genome is composed of repeated sequences derived from mobile elements, mainly retrotransposons, generally without pathogenic effect. Familial forms of retinoblastoma are caused by germline pathogenic variants in RB1 gene. Here, we describe a family with retinoblastoma affecting a father and his son. No pathogenic variant was identified after DNA analysis of RB1 gene coding sequence and exon-intron junctions. However, RB1 mRNA analysis showed a chimeric transcript with insertion of 114 nucleotides from HPF1 gene inside RB1 gene. This chimeric transcript led to an insertion of 38 amino acids in functional domain of retinoblastoma protein. Subsequent DNA analysis in RB1 intron 17 revealed the presence of a full-length HPF1 retrogene insertion in opposite orientation. Functional assay shows that this insertion has a deleterious impact on retinoblastoma protein function. This is the first report of a full-length retrogene insertion involved in human Mendelian disease leading to a chimeric transcript and a non-functional chimeric protein. Some retrogene insertions may be missed by standard diagnostic genetic testing, so contribution of retrogene insertions to human disease may be underestimated. The increasing use of whole genome sequencing in diagnostic settings will help to get a more comprehensive view of retrogenes.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/genetics , Retinoblastoma/diagnosis , Retinoblastoma/pathology , Retinoblastoma Protein/genetics , Genes, Retinoblastoma , Disease Susceptibility , Retinal Neoplasms/diagnosis , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , DNA , DNA Mutational Analysis , Ubiquitin-Protein Ligases/genetics , Retinoblastoma Binding Proteins/genetics , Carrier Proteins/genetics , Nuclear Proteins/genetics
3.
Mod Pathol ; 36(11): 100300, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37558130

ABSTRACT

Analyses of large transcriptomics data sets of muscle-invasive bladder cancer (MIBC) have led to a consensus classification. Molecular subtypes of upper tract urothelial carcinomas (UTUCs) are less known. Our objective was to determine the relevance of the consensus classification in UTUCs by characterizing a novel cohort of surgically treated ≥pT1 tumors. Using immunohistochemistry (IHC), subtype markers GATA3-CK5/6-TUBB2B in multiplex, CK20, p16, Ki67, mismatch repair system proteins, and PD-L1 were evaluated. Heterogeneity was assessed morphologically and/or with subtype IHC. FGFR3 mutations were identified by pyrosequencing. We performed 3'RNA sequencing of each tumor, with multisampling in heterogeneous cases. Consensus classes, unsupervised groups, and microenvironment cell abundance were determined using gene expression. Most of the 66 patients were men (77.3%), with pT1 (n = 23, 34.8%) or pT2-4 stage UTUC (n = 43, 65.2%). FGFR3 mutations and mismatch repair-deficient status were identified in 40% and 4.7% of cases, respectively. Consensus subtypes robustly classified UTUCs and reflected intrinsic subgroups. All pT1 tumors were classified as luminal papillary (LumP). Combining our consensus classification results with those of previously published UTUC cohorts, LumP tumors represented 57.2% of ≥pT2 UTUCs, which was significantly higher than MIBCs. Ten patients (15.2%) harbored areas of distinct subtypes. Consensus classes were associated with FGFR3 mutations, stage, morphology, and IHC. The majority of LumP tumors were characterized by low immune infiltration and PD-L1 expression, in particular, if FGFR3 mutated. Our study shows that MIBC consensus classification robustly classified UTUCs and highlighted intratumoral molecular heterogeneity. The proportion of LumP was significantly higher in UTUCs than in MIBCs. Most LumP tumors showed low immune infiltration and PD-L1 expression and high proportion of FGFR3 mutations. These findings suggest differential response to novel therapies between patients with UTUC and those with MIBC.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Male , Humans , Female , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/metabolism , B7-H1 Antigen/genetics , Consensus , Transcriptome , Biomarkers, Tumor/analysis , Tumor Microenvironment
4.
BJU Int ; 132(2): 170-180, 2023 08.
Article in English | MEDLINE | ID: mdl-36748180

ABSTRACT

OBJECTIVES: To evaluate variant histologies (VHs) for disease-specific survival (DSS) in patients with invasive urothelial bladder cancer (BCa) undergoing radical cystectomy (RC). MATERIALS AND METHODS: We analysed a multi-institutional cohort of 1082 patients treated with upfront RC for cT1-4aN0M0 urothelial BCa at eight centres. Univariable and multivariable Cox' regression analyses were used to assess the effect of different VHs on DSS in overall cohort and three stage-based analyses. The stages were defined as 'organ-confined' (≤pT2N0), 'locally advanced' (pT3-4N0) and 'node-positive' (pTanyN1-3). RESULTS: Overall, 784 patients (72.5%) had pure urothelial carcinoma (UC), while the remaining 298 (27.5%) harboured a VH. Squamous differentiation was the most common VH, observed in 166 patients (15.3%), followed by micropapillary (40 patients [3.7%]), sarcomatoid (29 patients [2.7%]), glandular (18 patients [1.7%]), lymphoepithelioma-like (14 patients [1.3%]), small-cell (13 patients [1.2%]), clear-cell (eight patients [0.7%]), nested (seven patients [0.6%]) and plasmacytoid VH (three patients [0.3%]). The median follow-up was 2.3 years. Overall, 534 (49.4%) disease-related deaths occurred. In uni- and multivariable analyses, plasmacytoid and small-cell VHs were associated with worse DSS in the overall cohort (both P = 0.04). In univariable analyses, sarcomatoid VH was significantly associated with worse DSS, while lymphoepithelioma-like VH had favourable DSS compared to pure UC. Clear-cell (P = 0.015) and small-cell (P = 0.011) VH were associated with worse DSS in the organ-confined and node-positive cohorts, respectively. CONCLUSIONS: More than 25% of patients harboured a VH at time of RC. Compared to pure UC, clear-cell, plasmacytoid, small-cell and sarcomatoid VHs were associated with worse DSS, while lymphoepithelioma-like VH was characterized by a DSS benefit. Accurate pathological diagnosis of VHs may ensure tailored counselling to identify patients who require more intensive management.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/pathology , Prognosis , Cystectomy , Retrospective Studies
5.
J Pathol ; 256(1): 108-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34611919

ABSTRACT

Basal/squamous (Ba/Sq) subtype represents an intrinsic and robust group in the consensus molecular classification of muscle-invasive bladder cancer (MIBC), with poor outcome and controversial chemosensitivity. We aimed to investigate the spectrum of intratumor heterogeneity (ITH) in the Ba/Sq subtype. First, we validated a 29-gene NanoString CodeSet to predict the Ba/Sq subtype for FFPE samples. We identified heterogeneous Ba/Sq tumors in a series of 331 MIBC FFPE samples using dual GATA3/KRT5/6 immunohistochemistry (IHC). Heterogeneous regions with distinct immunostaining patterns were studied separately for gene expression using the 29-gene CodeSet, for mutations by targeted next-generation sequencing, and for copy number alteration (CNA) by microarray hybridization. Among 83 Ba/Sq tumors identified by GATA3/KRT5/6 dual staining, 19 tumors showed heterogeneity at the IHC level. In one third of the 19 cases, regions from the same tumor were classified in different distinct molecular subtypes. The mutational and CNA profiles confirmed the same clonal origin for IHC heterogeneous regions with possible subclonal evolution. Overall, two patterns of intratumoral heterogeneity (ITH) were observed in Ba/Sq tumors: low ITH (regions with distinct immunostaining, but common molecular subtype and shared CNA) or high ITH (regions with distinct immunostaining, molecular subtype, and CNA). These results showed multilayer heterogeneity in Ba/Sq MIBC. In view of personalized medicine, this heterogeneity adds complexity and should be taken into account for sampling procedures used for diagnosis and treatment choice. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , DNA Copy Number Variations/genetics , Mutation/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Biomarkers, Tumor/metabolism , Gene Expression Profiling/methods , Humans , Immunohistochemistry/methods , Precision Medicine/methods , Urinary Bladder Neoplasms/diagnosis
6.
J Pathol ; 257(3): 327-339, 2022 07.
Article in English | MEDLINE | ID: mdl-35254670

ABSTRACT

The microenvironment of retinoblastoma, the solid malignancy of the developing retina, is immunosuppressive. To study the interactions between tumor-associated microglia/macrophages (TAMs) and tumor cells in retinoblastomas, we analyzed immunohistochemistry markers in 23 patient samples and characterized 105 secreted cytokines of 11 retinoblastoma cell models in culture. We detected profuse infiltration of CD163+ protumoral M2-like polarized TAMs in eyes enucleated due to cancer progression. Previous treatment of patients increased the number of TAMs but did not affect M2-like polarization. M2-like microglia/macrophages were almost absent in five eyes obtained from children enucleated due to nontumoral causes. CD8+ tumor-infiltrating lymphocytes (TILs) were moderately abundant in tumor eyes and very scarce in nontumoral ones. The expression of the immune checkpoint molecule PD-L1 was absent in 95% of the tumor samples, which is concordant with the finding of FOXP3+ Tregs infiltrating tumors. We confirmed the pathology results using single-cell transcriptome analysis of one tumor. We identified the cytokines extracellular matrix metalloproteinase inducer (EMMPRIN) and macrophage migration inhibitory factor (MIF), both with reported immunosuppressive activity, secreted at high levels in retinoblastoma primary cell cultures. Gene expression analysis of a large retinoblastoma cohort and single-cell transcriptome analysis confirmed that MIF and EMMPRIN were significantly upregulated in retinoblastomas, which led us to quantify both proteins by immunoassays in liquid biopsies (aqueous humor obtained from more than 20 retinoblastoma patients). We found a significant increase in the concentration of MIF and EMMPRIN in cancer patients, compared to 12 noncancer ones. Finally, we showed that macrophages derived from peripheral blood mononuclear cells increased the expression of markers of M2-like polarization upon exposure to retinoblastoma-conditioned medium or recombinant MIF. Overall, our findings suggest that retinoblastoma cell secretions induce the protumoral phenotype of this tumor. Our results might have clinical impact in the fields of biomarkers and treatment. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Aqueous Humor , Basigin , Humans , Leukocytes, Mononuclear , Retinal Neoplasms/genetics , Secretome , Tumor Microenvironment
7.
Nucleic Acids Res ; 49(19): 11005-11021, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34648034

ABSTRACT

Cohesin exists in two variants containing STAG1 or STAG2. STAG2 is one of the most mutated genes in cancer and a major bladder tumor suppressor. Little is known about how its inactivation contributes to tumorigenesis. Here, we analyze the genomic distribution of STAG1 and STAG2 and perform STAG2 loss-of-function experiments using RT112 bladder cancer cells; we then analyze the genomic effects by integrating gene expression and chromatin interaction data. Functional compartmentalization exists between the cohesin complexes: cohesin-STAG2 displays a distinctive genomic distribution and mediates short and mid-ranged interactions that engage genes at higher frequency than those established by cohesin-STAG1. STAG2 knockdown results in down-regulation of the luminal urothelial signature and up-regulation of the basal transcriptional program, mirroring differences between STAG2-high and STAG2-low human bladder tumors. This is accompanied by rewiring of DNA contacts within topological domains, while compartments and domain boundaries remain refractive. Contacts lost upon depletion of STAG2 are assortative, preferentially occur within silent chromatin domains, and are associated with de-repression of lineage-specifying genes. Our findings indicate that STAG2 participates in the DNA looping that keeps the basal transcriptional program silent and thus sustains the luminal program. This mechanism may contribute to the tumor suppressor function of STAG2 in the urothelium.


Subject(s)
Cell Cycle Proteins/genetics , Chromatin/chemistry , Loss of Function Mutation , Nuclear Proteins/genetics , Transcription, Genetic , Urinary Bladder Neoplasms/genetics , Base Sequence , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , HEK293 Cells , Histones/genetics , Histones/metabolism , Humans , Molecular Sequence Annotation , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
8.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955805

ABSTRACT

Bladder cancer is a common cancer; it is the tenth most common cancer in the world. Around one fourth of all diagnosed patients have muscle-invasive bladder cancer (MIBC), characterized by advanced tumors and which remains a lethal disease. The standard treatment for MIBC is the bladder removal by surgery. However, bladder-preserving alternatives are emerging by combining chemotherapy, radiotherapy and minimal surgery, aiming to increase the patient's quality of life. The aim of the study was to improve these treatments by investigating a novel approach where in addition to radiotherapy, a receptor, TYRO3, a member of TAM receptor tyrosine kinase family known to be highly expressed on the bladder cancer cells and involved in the control of cell survival is targeted. For this, we evaluated the influence of TYRO3 expression levels on a colony or cell survival assays, DNA damage, γH2AX foci formation, gene expression profiling and cell cycle regulation, after radiation on different bladder cell models. We found that TYRO3 expression impacts the radiation response via the cell cycle dysregulation with noeffets on the DNA repair. Therefore, targeting TYRO3 is a promising sensitization marker that could be clinically employed in future treatments.


Subject(s)
Urinary Bladder Neoplasms , Cell Cycle/genetics , Cystectomy , Humans , Quality of Life , Receptor Protein-Tyrosine Kinases/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/radiotherapy
9.
Proteomics ; 21(16): e2000303, 2021 08.
Article in English | MEDLINE | ID: mdl-34240547

ABSTRACT

Large-scale multi-omic analysis allows a thorough understanding of different physiological or pathological conditions, particularly cancer. Here, an extraction method simultaneously yielding DNA, RNA and protein (thereby referred to as "triple extraction", TEx) was tested for its suitability to unbiased, system-wide proteomic investigation. Largely proven efficient for transcriptomic and genomic studies, we aimed at exploring TEx compatibility with mass spectrometry-based proteomics and phospho-proteomics, as compared to a standard urea extraction. TEx is suitable for the shotgun investigation of proteomes, providing similar results as urea-based protocol both at the qualitative and quantitative levels. TEx is likewise compatible with the exploration of phosphorylation events, actually providing a higher number of correctly localized sites than urea, although the nature of extracted modifications appears somewhat distinct between both techniques. These results highlight that the presented protocol is well suited for the examination of the proteome and modified proteome of this bladder cancer cell model, as efficiently as other more widely used workflows for mass spectrometry-based analysis. Potentially applicable to other mammalian cell types and tissues, TEx represents an advantageous strategy for multi-omics on scarce and/or heterogenous samples.


Subject(s)
Proteome , Proteomics , Animals , Genomics , Mass Spectrometry , Workflow
10.
Bioinformatics ; 35(21): 4307-4313, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30938767

ABSTRACT

MOTIVATION: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never been compared based on the between-datasets reproducibility of their outputs in similar independent datasets. Lack of this knowledge might have a crucial impact when generalizing the predictions made in a study to others. RESULTS: We systematically test widely used MF methods on several transcriptomic datasets collected from the same cancer type (14 colorectal, 8 breast and 4 ovarian cancer transcriptomic datasets). Inspired by concepts of evolutionary bioinformatics, we design a novel framework based on Reciprocally Best Hit (RBH) graphs in order to benchmark the MF methods for their ability to produce generalizable components. We show that a particular protocol of application of independent component analysis (ICA), accompanied by a stabilization procedure, leads to a significant increase in the between-datasets reproducibility. Moreover, we show that the signals detected through this method are systematically more interpretable than those of other standard methods. We developed a user-friendly tool for performing the Stabilized ICA-based RBH meta-analysis. We apply this methodology to the study of colorectal cancer (CRC) for which 14 independent transcriptomic datasets can be collected. The resulting RBH graph maps the landscape of interconnected factors associated to biological processes or to technological artifacts. These factors can be used as clinical biomarkers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral microenvironment. Their intensities in different samples shed light on the mechanistic basis of CRC molecular subtyping. AVAILABILITY AND IMPLEMENTATION: The RBH construction tool is available from http://goo.gl/DzpwYp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Transcriptome , Algorithms , Breast Neoplasms , Gene Expression Profiling , Humans , Reproducibility of Results , Tumor Microenvironment
11.
Nano Lett ; 19(11): 7691-7702, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31565944

ABSTRACT

Molecular motors play important roles in force generation, migration, and intracellular trafficking. Changes in specific motor activities are altered in numerous diseases. KIF20A, a motor protein of the kinesin-6 family, is overexpressed in bladder cancer, and KIF20A levels correlate negatively with clinical outcomes. We report here a new role for the KIF20A kinesin motor protein in intracellular mechanics. Using optical tweezers to probe intracellular mechanics and surface AFM to probe cortical mechanics, we first confirm that bladder urothelial cells soften with an increasing cancer grade. We then show that inhibiting KIF20A makes the intracellular environment softer for both high- and low-grade bladder cancer cells. Upon inhibition of KIF20A, cortical stiffness also decreases in lower grade cells, while it surprisingly increases in higher grade malignant cells. Changes in cortical stiffness correlate with the interaction of KIF20A with myosin IIA. Moreover, KIF20A inhibition negatively regulates bladder cancer cell motility irrespective of the underlying substrate stiffness. Our results reveal a central role for a microtubule motor in cell mechanics and migration in the context of bladder cancer.


Subject(s)
Kinesins/metabolism , Urinary Bladder Neoplasms/pathology , Biomechanical Phenomena , Cell Line, Tumor , Cell Movement , Humans , Kinesins/analysis , Myosins/analysis , Myosins/metabolism , Optical Tweezers , Rheology , Urinary Bladder/cytology , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/metabolism
12.
Br J Cancer ; 120(5): 555-564, 2019 03.
Article in English | MEDLINE | ID: mdl-30765874

ABSTRACT

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is an aggressive neoplasm with poor prognosis, lacking effective therapeutic targets. Oncogenic dependency on members of the TAM tyrosine kinase receptor family (TYRO3, AXL, MERTK) has been reported in several cancer types, but their role in bladder cancer has never been explored. METHODS: TAM receptor expression was evaluated in two series of human bladder tumours by gene expression (TCGA and CIT series), immunohistochemistry and western blotting analyses (CIT series). The role of the different TAM receptors was assessed by loss-of-function experiments and pharmaceutical inhibition in vitro and in vivo. RESULTS: We reported a significantly higher expression of TYRO3, but not AXL or MERTK, in both non-MIBCs and MIBCs, compared to normal urothelium. Loss-of-function experiments identified a TYRO3-dependency of bladder carcinoma-derived cells both in vitro and in a mouse xenograft model, whereas AXL and MERTK depletion had only a minor impact on cell viability. Accordingly, TYRO3-dependent bladder tumour cells were sensitive to pharmacological treatment with two pan-TAM inhibitors. Finally, growth inhibition upon TYRO3 depletion relies on cell cycle inhibition and apoptosis associated with induction of tumour-suppressive signals. CONCLUSIONS: Our results provide a preclinical proof of concept for TYRO3 as a potential therapeutic target in bladder cancer.


Subject(s)
Carcinoma, Transitional Cell/genetics , Receptor Protein-Tyrosine Kinases/genetics , Urinary Bladder Neoplasms/genetics , Animals , Apoptosis/genetics , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Cell Survival , Gene Expression , Humans , Hylobatidae , Immunochemistry , In Vitro Techniques , Mice , Molecular Targeted Therapy , Muscle, Smooth/pathology , Neoplasm Invasiveness , Neoplasm Transplantation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Axl Receptor Tyrosine Kinase
13.
Exp Cell Res ; 369(2): 284-294, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29842880

ABSTRACT

Identification of transcription factors expressed by differentiated cells is informative not only of tissue-specific pathways, but to help identify master regulators for cellular reprogramming. If applied, such an approach could generate healthy autologous tissue-specific cells for clinical use where cells from the homologous tissue are unavailable due to disease. Normal human epithelial cells of buccal and urothelial derivation maintained in identical culture conditions that lacked significant instructive or permissive signaling cues were found to display inherent similarities and differences of phenotype. Investigation of transcription factors implicated in driving urothelial-type differentiation revealed buccal epithelial cells to have minimal or absent expression of PPARG, GATA3 and FOXA1 genes. Retroviral overexpression of protein coding sequences for GATA3 or PPARy1 in buccal epithelial cells resulted in nuclear immunolocalisation of the respective proteins, with both transductions also inducing expression of the urothelial differentiation-associated claudin 3 tight junction protein. PPARG1 overexpression alone entrained expression of nuclear FOXA1 and GATA3 proteins, providing objective evidence of its upstream positioning in a transcription factor network and identifying it as a candidate factor for urothelial-type transdifferentiation or reprogramming.


Subject(s)
Mouth Mucosa/cytology , Mouth Mucosa/metabolism , Transcription Factors/metabolism , Urothelium/cytology , Urothelium/metabolism , Cell Differentiation , Cell Transdifferentiation , Cells, Cultured , Cellular Reprogramming , Epithelial Cells/cytology , Epithelial Cells/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , PPAR gamma/genetics , PPAR gamma/metabolism , Phenotype , Tissue Engineering , Transcription Factors/genetics , Uroplakins/genetics , Uroplakins/metabolism
14.
PLoS Genet ; 12(2): e1005888, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26925970

ABSTRACT

Retinoblastoma (Rb), the most common pediatric intraocular neoplasm, results from inactivation of both alleles of the RB1 tumor suppressor gene. The second allele is most commonly lost, as demonstrated by loss of heterozygosity studies. RB1 germline carriers usually develop bilateral tumors, but some Rb families display low penetrance and variable expressivity. In order to decipher the underlying mechanisms, 23 unrelated low penetrance pedigrees segregating the common c.1981C>T/p.Arg661Trp mutation and other low penetrance mutations were studied. In families segregating the c.1981C>T mutation, we demonstrated, for the first time, a correlation between the gender of the transmitting carrier and penetrance, as evidenced by Fisher's exact test: the probability of being unaffected is 90.3% and 32.5% when the mutation is inherited from the mother and the father, respectively (p-value = 7.10(-7). Interestingly, a similar correlation was observed in families segregating other low penetrance alleles. Consequently, we investigated the putative involvement of an imprinted, modifier gene in low penetrance Rb. We first ruled out a MED4-driven mechanism by MED4 methylation and expression analyses. We then focused on the differentially methylated CpG85 island located in intron 2 of RB1 and showing parent-of-origin-specific DNA methylation. This differential methylation promotes expression of the maternal c.1981C>T allele. We propose that the maternally inherited c.1981C>T/p.Arg661Trp allele retains sufficient tumor suppressor activity to prevent retinoblastoma development. In contrast, when the mutation is paternally transmitted, the low residual activity would mimic a null mutation and subsequently lead to retinoblastoma. This implies that the c.1981C>T mutation is not deleterious per se but needs to be destabilized in order to reach pRb haploinsufficiency and initiate tumorigenesis. We suggest that this phenomenon might be a general mechanism to explain phenotypic differences in low penetrance Rb families.


Subject(s)
Mutation , Retinal Neoplasms/genetics , Retinoblastoma Protein/genetics , Retinoblastoma/genetics , CpG Islands , DNA Methylation , Female , Heterozygote , Humans , Male , Mediator Complex/genetics , Mediator Complex/metabolism , Pedigree , Penetrance , Phenotype , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Retinoblastoma Protein/metabolism
15.
Int J Mol Sci ; 20(18)2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31500324

ABSTRACT

Independent component analysis (ICA) is a matrix factorization approach where the signals captured by each individual matrix factors are optimized to become as mutually independent as possible. Initially suggested for solving source blind separation problems in various fields, ICA was shown to be successful in analyzing functional magnetic resonance imaging (fMRI) and other types of biomedical data. In the last twenty years, ICA became a part of the standard machine learning toolbox, together with other matrix factorization methods such as principal component analysis (PCA) and non-negative matrix factorization (NMF). Here, we review a number of recent works where ICA was shown to be a useful tool for unraveling the complexity of cancer biology from the analysis of different types of omics data, mainly collected for tumoral samples. Such works highlight the use of ICA in dimensionality reduction, deconvolution, data pre-processing, meta-analysis, and others applied to different data types (transcriptome, methylome, proteome, single-cell data). We particularly focus on the technical aspects of ICA application in omics studies such as using different protocols, determining the optimal number of components, assessing and improving reproducibility of the ICA results, and comparison with other popular matrix factorization techniques. We discuss the emerging ICA applications to the integrative analysis of multi-level omics datasets and introduce a conceptual view on ICA as a tool for defining functional subsystems of a complex biological system and their interactions under various conditions. Our review is accompanied by a Jupyter notebook which illustrates the discussed concepts and provides a practical tool for applying ICA to the analysis of cancer omics datasets.


Subject(s)
Computational Biology/methods , Neoplasms/genetics , Neoplasms/metabolism , Algorithms , Data Curation , Databases, Factual , Humans , Machine Learning , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Principal Component Analysis
16.
Bioorg Med Chem ; 26(20): 5510-5530, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30309671

ABSTRACT

The TAM kinase family arises as a new effective and attractive therapeutic target for cancer therapy, autoimmune and viral diseases. A series of 2,6-disubstituted imidazo[4,5-b]pyridines were designed, synthesized and identified as highly potent TAM inhibitors. Despite remarkable structural similarities within the TAM family, compounds 28 and 25 demonstrated high activity and selectivity in vitro against AXL and MER, with IC50 value of 0.77 nM and 9 nM respectively and a 120- to 900-fold selectivity. We also observed an unexpected nuclear localization for compound 10Bb, thanks to nanoSIMS technology, which could be correlated to the absence of cytotoxicity on three different cancer cell lines being sensitive to TAM inhibition.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , c-Mer Tyrosine Kinase/antagonists & inhibitors , A549 Cells , Drug Design , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacokinetics , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins/metabolism , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , c-Mer Tyrosine Kinase/metabolism , Axl Receptor Tyrosine Kinase
17.
BMC Bioinformatics ; 18(1): 333, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28697800

ABSTRACT

BACKGROUND: Detecting local correlations in expression between neighboring genes along the genome has proved to be an effective strategy to identify possible causes of transcriptional deregulation in cancer. It has been successfully used to illustrate the role of mechanisms such as copy number variation (CNV) or epigenetic alterations as factors that may significantly alter expression in large chromosomal regions (gene silencing or gene activation). RESULTS: The identification of correlated regions requires segmenting the gene expression correlation matrix into regions of homogeneously correlated genes and assessing whether the observed local correlation is significantly higher than the background chromosomal correlation. A unified statistical framework is proposed to achieve these two tasks, where optimal segmentation is efficiently performed using dynamic programming algorithm, and detection of highly correlated regions is then achieved using an exact test procedure. We also propose a simple and efficient procedure to correct the expression signal for mechanisms already known to impact expression correlation. The performance and robustness of the proposed procedure, called SegCorr, are evaluated on simulated data. The procedure is illustrated on cancer data, where the signal is corrected for correlations caused by copy number variation. It permitted the detection of regions with high correlations linked to epigenetic marks like DNA methylation. CONCLUSIONS: SegCorr is a novel method that performs correlation matrix segmentation and applies a test procedure in order to detect highly correlated regions in gene expression.


Subject(s)
Gene Expression Regulation, Neoplastic , Genomics/methods , Models, Statistical , Algorithms , DNA Copy Number Variations , DNA Methylation , Epigenesis, Genetic , Gene Expression , Humans , Neoplasms/genetics
18.
J Proteome Res ; 16(4): 1617-1631, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28287737

ABSTRACT

Urothelial bladder cancer is a condition associated with high recurrence and substantial morbidity and mortality. Noninvasive urinary tests that would detect bladder cancer and tumor recurrence are required to significantly improve patient care. Over the past decade, numerous bladder cancer candidate biomarkers have been identified in the context of extensive proteomics or transcriptomics studies. To translate these findings in clinically useful biomarkers, the systematic evaluation of these candidates remains the bottleneck. Such evaluation involves large-scale quantitative LC-SRM (liquid chromatography-selected reaction monitoring) measurements, targeting hundreds of signature peptides by monitoring thousands of transitions in a single analysis. The design of highly multiplexed SRM analyses is driven by several factors: throughput, robustness, selectivity and sensitivity. Because of the complexity of the samples to be analyzed, some measurements (transitions) can be interfered by coeluting isobaric species resulting in biased or inconsistent estimated peptide/protein levels. Thus the assessment of the quality of SRM data is critical to allow flagging these inconsistent data. We describe an efficient and robust method to process large SRM data sets, including the processing of the raw data, the detection of low-quality measurements, the normalization of the signals for each protein, and the estimation of protein levels. Using this methodology, a variety of proteins previously associated with bladder cancer have been assessed through the analysis of urine samples from a large cohort of cancer patients and corresponding controls in an effort to establish a priority list of most promising candidates to guide subsequent clinical validation studies.


Subject(s)
Biomarkers, Tumor/urine , Carcinoma, Transitional Cell/urine , Proteomics , Urinary Bladder Neoplasms/urine , Amino Acid Sequence/genetics , Biomarkers, Tumor/genetics , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Chromatography, Liquid/methods , Humans , Mass Spectrometry/methods , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
19.
BMC Cancer ; 17(1): 636, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28882129

ABSTRACT

BACKGROUND: The insulin growth factor (IGF) pathway has been proposed as a potential therapeutic target in bladder cancer. We characterized the expression of components of the IGF pathway - insulin growth factor receptors (INSR, IGF1R, IGF2R), ligands (INS, IGF1, IGF2), and binding proteins (IGFBP1-7, IGF2BP1-3) - in bladder cancer and its correlation with IGF1R activation, and the anti-proliferative efficacy of an IGF1R kinase inhibitor in this setting. METHODS: We analyzed transcriptomic data from two independent bladder cancer datasets, corresponding to 200 tumoral and five normal urothelium samples. We evaluated the activation status of the IGF pathway in bladder tumors, by assessing IGF1R phosphorylation and evaluating its correlation with mRNA levels for IGF pathway components. We finally evaluated the correlation between inhibition of proliferation by a selective inhibitor of the IGF1R kinase (AEW541), reported in 13 bladder cancer derived cell lines by the Cancer Cell Line Encyclopedia Consortium and mRNA levels for IGF pathway components. RESULTS: IGF1R expression and activation were stronger in non-muscle-invasive than in muscle-invasive bladder tumors. There was a significant inverse correlation between IGF1R phosphorylation and IGFBP5 expression in tumors. Consistent with this finding, the inhibition of bladder cell line viability by IGF1R inhibitor was also inversely correlated with IGFBP5 expression. CONCLUSION: The IGF pathway is activated and therefore a potential therapeutic target for non muscle-invasive bladder tumors and IGFBP5 could be used as a surrogate marker for predicting tumor sensitivity to anti-IGF therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Insulin-Like Growth Factor Binding Protein 5/genetics , Receptor, IGF Type 1/agonists , Receptor, IGF Type 1/antagonists & inhibitors , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Aged , Aged, 80 and over , Carrier Proteins , Cell Line, Tumor , Cell Proliferation , Female , Humans , Insulin-Like Growth Factor Binding Protein 5/metabolism , Ligands , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Protein Binding , RNA, Messenger/genetics , Signal Transduction , Urinary Bladder Neoplasms/pathology
20.
Bioinformatics ; 31(18): 3066-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25979476

ABSTRACT

UNLABELLED: CoRegNet is an R/Bioconductor package to analyze large-scale transcriptomic data by highlighting sets of co-regulators. Based on a transcriptomic dataset, CoRegNet can be used to: reconstruct a large-scale co-regulatory network, integrate regulation evidences such as transcription factor binding sites and ChIP data, estimate sample-specific regulator activity, identify cooperative transcription factors and analyze the sample-specific combinations of active regulators through an interactive visualization tool. In this study CoRegNet was used to identify driver regulators of bladder cancer. AVAILABILITY: CoRegNet is available at http://bioconductor.org/packages/CoRegNet CONTACT: remy.nicolle@issb.genopole.fr or mohamed.elati@issb.genopole.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Software , Transcription Factors/metabolism , Urinary Bladder Neoplasms/genetics , Algorithms , Chromatin Immunoprecipitation , Computer Simulation , Databases, Genetic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL