Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Blood Cancer Discov ; 4(2): 106-117, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36511813

ABSTRACT

Patients with multiple myeloma (MM) mount suboptimal neutralizing antibodies (nAb) following 2 doses of SARS-CoV-2 mRNA vaccines. Currently, circulating SARS-CoV-2 variants of concern (VOC) carry the risk of breakthrough infections. We evaluated immune recognition of current VOC including BA.1, BA.2, and BA.5 in 331 racially representative patients with MM following 2 or 3 doses of mRNA vaccines. The third dose increased nAbs against WA1 in 82%, but against BA variants in only 33% to 44% of patients. Vaccine-induced nAbs correlated with receptor-binding domain (RBD)-specific class-switched memory B cells. Vaccine-induced spike-specific T cells were detected in patients without seroconversion and cross-recognized variant-specific peptides but were predominantly CD4+ T cells. Detailed clinical/immunophenotypic analysis identified features correlating with nAb/B/T-cell responses. Patients who developed breakthrough infections following 3 vaccine doses had lower live-virus nAbs, including against VOC. Patients with MM remain susceptible to SARS-CoV-2 variants following 3 vaccine doses and should be prioritized for emerging approaches to elicit variant-nAb and CD8+ T cells. SIGNIFICANCE: Three doses of SARS-CoV-2 mRNA vaccines fail to yield detectable VOC nAbs in nearly 60% and spike-specific CD8+ T cells in >80% of myeloma patients. Patients who develop breakthrough infections following vaccination have low levels of live-virus nAb. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , SARS-CoV-2 , Breakthrough Infections , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , mRNA Vaccines , Antibodies, Neutralizing
2.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35710294

ABSTRACT

BACKGROUND: Black and Hispanic children with B-acute lymphoblastic leukemia (B-ALL) experience worse outcomes compared with their non-Hispanic white (NHW) counterparts. Immune-based approaches have begun to transform the therapeutic landscape in children with B-ALL. Recent studies identified several alterations in both innate and adaptive immune cells in children with B-ALL that may impact disease risk and outcome. However, the impact of racial/ethnic background on immune microenvironment is less studied, as children of minorities background have to date been severely under-represented in such studies. METHODS: We performed high-dimensional analysis of bone marrow from 85 children with newly diagnosed B-ALL (Hispanic=29, black=18, NHW=38) using mass cytometry with 40 and 38-marker panels. RESULTS: Race/ethnicity-associated differences were most prominent in the innate immune compartment. Hispanic patients had significantly increased proportion of distinct mature CD57 +T-bet+DR+ NK cells compared with other cohorts. These differences were most apparent within standard risk (SR) patients with Hispanic SR patients having greater numbers of CD57 +NK cells compared with other cohorts (43% vs 26% p=0.0049). Hispanic and Black children also had distinct alterations in myeloid cells, with a significant increase in a population of non-classical activated HLA-DR +CD16+myeloid cells, previously implicated in disease progression, compared with NHW counterparts. Racial background also correlated with altered expression of inhibitory checkpoint PD-L1 on myeloid cells. CONCLUSION: There are surprisingly substantial race/ethnicity-based differences in innate immune cells of children with newly diagnosed B-ALL. These differences urge the need to enhance accrual of children from minorities background in immunetherapy trials and may impact their outcome following such therapy.


Subject(s)
Ethnicity , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Acute Disease , Child , Hispanic or Latino , Humans , Immunity, Innate , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL