Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2317230121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768344

ABSTRACT

Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV-1 , HIV Envelope Protein gp41/immunology , HIV Envelope Protein gp41/chemistry , HIV-1/immunology , Animals , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Humans , Mice , Epitopes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Peptides/immunology , Peptides/chemistry , Female , Antibodies, Monoclonal/immunology
2.
Bioorg Med Chem Lett ; 27(9): 2038-2046, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28285916

ABSTRACT

HIV integrase strand transfer inhibitors (InSTIs) represent an important class of antiviral therapeutics with proven efficacy and excellent tolerability for the treatment of HIV infections. In 2007, Raltegravir became the first marketed strand transfer inhibitor pioneering the way to a first-line therapy for treatment-naïve patients. Challenges with this class of therapeutics remain, including frequency of the dosing regimen and the genetic barrier to resistance. To address these issues, research towards next-generation integrase inhibitors has focused on imparting potency against RAL-resistent mutants and improving pharmacokinetic profiles. Herein, we detail medicinal chemistry efforts on a novel class of 2-pyridinone aminal InSTIs, inpsired by MK-0536, which led to the discovery of important lead molecules for our program. Systematic optimization carried out at the amide and aminal positions on the periphery of the core provided the necessary balance of antiviral activity and physiochemical properties. These efforts led to a novel aminal lead compound with the desired virological profile and preclinical pharmacokinetic profile to support a once-daily human dose prediction.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/enzymology , Pyridones/chemistry , Pyridones/pharmacology , Animals , Dogs , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , Humans , Molecular Docking Simulation , Pyridones/pharmacokinetics
3.
Bioorg Med Chem Lett ; 26(1): 126-32, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26602277

ABSTRACT

Herein, we present the identification of a novel class of pyrazolopyrimidine phosphodiesterase 10A (PDE10A) inhibitors. Beginning with a lead molecule (1) identified through a fragment-based drug discovery (FBDD) effort, lead optimization was enabled by rational design, X-ray crystallography, metabolic and off-target profiling, and fragment scaffold-hopping. We highlight the discovery of PyP-1, a potent, highly selective, and orally bioavailable pyrazolopyrimidine inhibitor of PDE10A. PyP-1 exhibits sub-nanomolar potency (PDE10A Ki=0.23nM), excellent pharmacokinetic (PK) and physicochemical properties, and a clean off-target profile. It displays dose-dependent efficacy in numerous pharmacodynamic (PD) assays that measure potential for anti-psychotic activity and cognitive improvement. PyP-1 also has a clean preclinical profile with respect to cataleptic potential in rats, prolactin secretion, and weight gain, common adverse events associated with currently marketed therapeutics. Further, PyP-1 displays in vivo preclinical target engagement as measured by PET enzyme occupancy in concert with [(11)C]MK-8193, a novel PDE10A PET tracer.


Subject(s)
Drug Discovery , Heterocyclic Compounds, 4 or More Rings/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Schizophrenia/drug therapy , Animals , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Macaca mulatta , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Rats , Rats, Wistar , Schizophrenia/enzymology , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 25(21): 4893-4898, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26077491

ABSTRACT

Phosphodiesterase 10A (PDE10A) inhibition has recently been identified as a potential mechanism to treat multiple symptoms that manifest in schizophrenia. In order to facilitate preclinical development and support key proof-of-concept clinical trials of novel PDE10A inhibitors, it is critical to discover positron emission tomography (PET) tracers that enable plasma concentration/PDE10A occupancy relationships to be established across species with structurally diverse PDE10A inhibitors. In this Letter, we describe how a high-throughput screening hit was optimized to provide [(11)C]MK-8193 (8j), a PET tracer that supports the determination of plasma concentration/PDE10A occupancy relationships for structurally diverse series of PDE10A inhibitors in both rat and rhesus monkey.


Subject(s)
Drug Discovery , Heterocyclic Compounds, 2-Ring/chemistry , Phosphodiesterase Inhibitors/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography , Animals , Brain/metabolism , Carbon Radioisotopes , Crystallography, X-Ray , Dose-Response Relationship, Drug , Heterocyclic Compounds, 2-Ring/chemical synthesis , Macaca mulatta , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/blood , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 25(3): 444-50, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25577040

ABSTRACT

Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6. PE-6 displays sub-nanomolar binding affinity and functional potency on OX2R while maintaining >1600-fold binding selectivity and >200-fold functional selectivity versus the orexin 1 receptor (OX1R). PE-6 bears a clean off-target profile, a good overall preclinical pharmacokinetic (PK) profile, and reduces wakefulness with increased NREM and REM sleep when evaluated in vivo in a rat sleep study. Importantly, subtle structural changes to the piperidine ether class impart dramatic changes in receptor selectivity. To this end, our laboratories have identified multiple piperidine ether 2-SORAs, 1-SORAs, and DORAs, providing access to a number of important biological tool compounds from a single structural class.


Subject(s)
Ethers/chemistry , Orexin Receptor Antagonists , Piperidines/chemistry , Pyrimidines/chemistry , Animals , Dogs , Drug Evaluation, Preclinical , Ethers/chemical synthesis , Ethers/pharmacokinetics , Half-Life , Humans , Orexin Receptors/metabolism , Piperidines/metabolism , Protein Binding , Pyrimidines/metabolism , Rats , Sleep/drug effects , Structure-Activity Relationship
6.
Nat Microbiol ; 9(5): 1244-1255, 2024 May.
Article in English | MEDLINE | ID: mdl-38649414

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Lipopolysaccharides , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Lipopolysaccharides/metabolism , Animals , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Mice , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biological Transport , Microbial Sensitivity Tests , Humans , Cryoelectron Microscopy , Carbapenems/pharmacology , Carbapenems/metabolism , Disease Models, Animal , Female , ATP-Binding Cassette Transporters
7.
J Med Chem ; 66(2): 1157-1171, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36624931

ABSTRACT

PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics. Herein we describe the discovery of an isomeric pyrimidine series that addresses the liabilities seen with earlier compounds and resulted in the invention of compound 18 (MK-8189), which is currently in Phase 2b clinical development for the treatment of schizophrenia.


Subject(s)
Phosphodiesterase Inhibitors , Schizophrenia , Humans , Crystallography, X-Ray , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/chemistry , Schizophrenia/drug therapy , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 22(18): 5903-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22892116

ABSTRACT

We describe the discovery of potent and orally bioavailable tetrahydropyridopyrimidine inhibitors of phosphodiesterase 10A by systematic optimization of a novel HTS lead. Lead compound THPP-1 exhibits nanomolar potencies, excellent pharmacokinetic properties, and a clean off-target profile. It displays in vivo target engagement as measured by increased rat striatal cGMP levels upon oral dosing. It shows dose-dependent efficacy in a key pharmacodynamic assay predictive of antipsychotic activity, the psychostimulant-induced rat hyperlocomotion assay. Further, THPP-1 displays significantly fewer preclinical adverse events in assays measuring prolactin secretion, catalepsy, and weight gain, in contrast to the typical and atypical antipsychotics haloperidol and olanzapine.


Subject(s)
Drug Discovery , Phosphodiesterase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyrimidines/pharmacology , Schizophrenia/drug therapy , Administration, Oral , Animals , Cyclic GMP/analysis , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyridines/administration & dosage , Pyridines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
9.
Angew Chem Int Ed Engl ; 51(36): 9071-4, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22887962

ABSTRACT

A robust and general catalyst system facilitates the alkoxylation of activated heteroaryl halides with primary, secondary, and select tertiary alcohols without the need for an excess of either coupling partner. This catalyst system displays broad functional-group tolerance and excellent regioselectivity, and is insensitive to the order of reagent addition.


Subject(s)
Alcohols/chemistry , Halogens/chemistry , Heterocyclic Compounds/chemistry , Carbon/chemistry , Catalysis , Copper/chemistry , Oxygen/chemistry , Palladium/chemistry , Stereoisomerism
10.
J Med Chem ; 65(5): 3776-3785, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35192762

ABSTRACT

Increasing the efficiency of the drug discovery process is a challenge faced by drug hunters everywhere. One strategy medicinal chemists employ to meet this challenge is learning from knowledge sources within and beyond their organization. In this Perspective, we discuss the evolution of mechanisms for medicinal chemistry knowledge capture and sharing at Merck & Co. over the past 15 years. We describe our approach to knowledge management and report on the multiple enduring and complementary teams and initiatives we have created to capture and share knowledge within a geographically diverse medicinal chemistry community. In addition, this Perspective will share the benefits we have observed and also reflect on what has allowed our efforts to be both successful and sustainable.


Subject(s)
Chemistry, Pharmaceutical , Drug Discovery
11.
Nat Commun ; 12(1): 3040, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031403

ABSTRACT

All herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.5 Å resolution. PNU bound at the polymerase active site, displacing the template strand and inducing a conformational shift of the fingers domain into an open state. These results demonstrate that PNU inhibits replication by blocking association of dNTP and stalling the enzyme in a catalytically incompetent conformation, ultimately acting as a nucleotide competing inhibitor (NCI). Sequence conservation of the NCI binding pocket further explains broad-spectrum activity while a direct interaction between PNU and residue V823 rationalizes why mutations at this position result in loss of inhibition.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/drug effects , DNA-Directed DNA Polymerase/genetics , Herpesviridae/drug effects , Herpesviridae/enzymology , Antiviral Agents/pharmacology , Binding Sites , DNA-Directed DNA Polymerase/metabolism , Drug Resistance, Viral/drug effects , Exodeoxyribonucleases , Nucleotides , Quinolines/pharmacology , Viral Proteins , Virus Replication
12.
Org Lett ; 10(8): 1577-80, 2008 Apr 17.
Article in English | MEDLINE | ID: mdl-18341346

ABSTRACT

The regio- and enantioselective cyclization of pyrroles onto N-acyliminium ions generated in situ from hydroxylactams is reported. Modest to excellent ee's and yields are obtained in these novel Pictet-Spengler-type reactions with a chiral thiourea-pyrrole catalyst. Useful synthetic transformations of the versatile pyrroloindolizidinone and pyrroloquinolizidinone products are presented.


Subject(s)
Imines/chemistry , Catalysis , Cyclization , Stereoisomerism
13.
J Med Chem ; 61(20): 9218-9228, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30265808

ABSTRACT

MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine) is a novel nucleoside analog that displays a differentiated mechanism of action as a nucleoside reverse transcriptase translocation inhibitor (NRTTI) compared to approved NRTIs. Herein, we describe our recent efforts to explore the impact of structural changes to the properties of MK-8591 through the synthesis and antiviral evaluation of carbocyclic derivatives. Synthesized analogs were evaluated for their antiviral activity, and the corresponding triphosphates were synthesized and evaluated in a biochemical assay. 4'-Ethynyl-G derivative (±)-29 displayed a promising IC50 of 33 nM in a hPBMC cell-based antiviral assay, and its triphosphate (TP), (±)-29-TP, displayed an IC50 of 324 nM in a biochemical RT-polymerase assay. Improved TP anabolite delivery resulting in improved in vitro potency was achieved by preparing the corresponding phosphoramidate prodrug of single enantiomer 29b, with 6-ethoxy G derivative 34b displaying a significantly improved IC50 of 3.0 nM, paving the way for new directions for this novel class of nucleoside analogs.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Deoxyadenosines/chemical synthesis , Deoxyadenosines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Cell Line , Chemistry Techniques, Synthetic , Deoxyadenosines/metabolism , Deoxyadenosines/pharmacokinetics , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Conformation , Rats , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/pharmacokinetics , Tissue Distribution
14.
Mol Imaging Biol ; 18(4): 579-87, 2016 08.
Article in English | MEDLINE | ID: mdl-26596571

ABSTRACT

PURPOSE: A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. PROCEDURES: In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. RESULTS: [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. CONCLUSIONS: [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemistry , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography/methods , Animals , Brain/diagnostic imaging , Carbon Radioisotopes , Female , Heterocyclic Compounds, 2-Ring/blood , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Macaca mulatta , Male , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Rats , Time Factors
15.
J Med Chem ; 58(20): 8154-65, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26397965

ABSTRACT

The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Animals , Area Under Curve , Dogs , Dose-Response Relationship, Drug , Drug Design , HIV Integrase/drug effects , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Humans , Models, Molecular , Prodrugs , Pyridones/pharmacokinetics , Rats
16.
Diabetes ; 63(1): 300-11, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24101672

ABSTRACT

Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances. Inhibition of weight gain is due to hypophagia after mice are fed a highly palatable diet rich in fats and sugar but not a standard diet. PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime versus nighttime feeding behavior, or locomotor activity. We tested THPP-6, a small molecule PDE10A inhibitor, in DIO mice. THPP-6 treatment resulted in decreased food intake, body weight loss, and reduced adiposity at doses that produced antipsychotic efficacy in behavioral models. We show that PDE10A inhibition increased whole-body energy expenditure in DIO mice fed a Western-style diet, achieving weight loss and reducing adiposity beyond the extent seen with food restriction alone. Therefore, chronic THPP-6 treatment conferred improved insulin sensitivity and reversed hyperinsulinemia. These data demonstrate that PDE10A inhibition represents a novel antipsychotic target that may have additional metabolic benefits over current medications for schizophrenia by suppressing food intake, alleviating weight gain, and reducing the risk for the development of diabetes.


Subject(s)
Body Weight/genetics , Diet , Insulin Resistance/genetics , Obesity/prevention & control , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Body Weight/drug effects , Eating/drug effects , Eating/genetics , Feeding Behavior/drug effects , Feeding Behavior/physiology , Male , Mice , Motor Activity/drug effects , Motor Activity/genetics , Obesity/drug therapy , Obesity/genetics , Phosphodiesterase Inhibitors/therapeutic use , Phosphoric Diester Hydrolases/metabolism , Pyridines/therapeutic use , Pyrimidines/therapeutic use
17.
J Med Chem ; 56(15): 6007-21, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23586692

ABSTRACT

The medicinal chemistry subgroup of the American Chemical Society's Green Chemistry Institute Pharmaceutical Roundtable (ACS GCI PR) offers a perspective on the current state of environmentally sustainable practices in medicinal chemistry with the aim of sharing best practices more widely and highlighting some potential future developments.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Discovery/trends , Chemical Engineering/methods , Chemical Engineering/trends , Chemistry, Pharmaceutical/methods , Drug Discovery/methods , Green Chemistry Technology/methods , Green Chemistry Technology/trends
18.
Neuropharmacology ; 64: 215-23, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22750078

ABSTRACT

Phosphodiesterase 10A (PDE10A) is a novel target for the treatment of schizophrenia that may address multiple symptomatic domains associated with this disorder. PDE10A is highly expressed in the brain and functions to metabolically inactivate the important second messengers cAMP and cGMP. Here we describe effects of a potent and orally bioavailable PDE10A inhibitor [2-(6-chloropyridin-3-yl)-4-(2-methoxyethoxy)-7,8-dihydropyrido[4,3-d]pyrimidin-6(5H)-yl](imidazo[1,5-a]pyridin-1-yl)methanone] (THPP-1) on striatal signaling pathways, in behavioral tests that predict antipsychotic potential, and assays that measure episodic-like memory in rat and executive function in rhesus monkey. THPP-1 exhibits nanomolar potency on the PDE10A enzyme, demonstrates excellent pharmacokinetic properties in multiple preclinical animal species, and is selective for PDE10A over other PDE families of enzymes. THPP-1 significantly increased phosphorylation of proteins in the striatum involved in synaptic plasticity, including the a-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor (AMPA) GluR1 subunit, extracellular receptor kinase (ERK), and cAMP-response element binding protein (CREB). THPP-1 produced dose-dependent effects in preclinical assays predictive of antipsychotic activity including attenuation of MK-801-induced psychomotor activation and condition avoidance responding in rats. At similar plasma exposures, THPP-1 significantly increased object recognition memory in rat and attenuated a ketamine-induced deficit in the object retrieval detour task in rhesus monkey. These findings suggest that PDE10A inhibitors have the potential to impact multiple symptomatic domains of schizophrenia including positive symptoms and cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.


Subject(s)
Antipsychotic Agents/therapeutic use , Cognition Disorders/prevention & control , Molecular Targeted Therapy , Nootropic Agents/therapeutic use , Phosphodiesterase Inhibitors/therapeutic use , Phosphoric Diester Hydrolases/metabolism , Schizophrenia/drug therapy , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/blood , Antipsychotic Agents/pharmacokinetics , Behavior, Animal/drug effects , Cognition Disorders/etiology , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Executive Function/drug effects , Macaca mulatta , Male , Memory, Episodic , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/enzymology , Neurons/metabolism , Nootropic Agents/administration & dosage , Nootropic Agents/blood , Nootropic Agents/pharmacokinetics , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/blood , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphoric Diester Hydrolases/chemistry , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Pyridines/administration & dosage , Pyridines/blood , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Pyrimidines/administration & dosage , Pyrimidines/blood , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Random Allocation , Rats , Rats, Wistar , Schizophrenia/blood , Schizophrenia/metabolism , Schizophrenia/physiopathology
20.
J Am Chem Soc ; 126(3): 706-7, 2004 Jan 28.
Article in English | MEDLINE | ID: mdl-14733531

ABSTRACT

The catalytic, asymmetric syntheses of quinine and quinidine were achieved in 16 steps. The recently developed salen(Al)-catalyzed enantioselective Michael addition of methyl cyanoacetate served to set the crucial C4 stereocenter in 92% ee, and a late-stage asymmetric dihydroxylation was used to differentiate the common intermediate and access the two desired diastereomeric products with high selectivity.


Subject(s)
Quinidine/chemical synthesis , Quinine/chemical synthesis , Catalysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL