Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849140

ABSTRACT

Beta-adrenergic receptors (ß-AR) are expressed on the membranes of various cell types and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function and metabolic processes. However, ß-AR-associated body fluid imbalance has not been well characterised. In the present study, we hypothesized that chronic ß-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a non-selective ß-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart, increased the total body sodium, potassium and water contents at the tissue level, and increased the water intake and blood pressure of the mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a non-selective beta-receptor inhibitor. Isoproterenol-treated mice even without excessive water intake had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that ß-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that ß-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterisation of ß-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of ß-AR inhibitors. Significance Statement We have shown that chronic ß-AR stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium and water at the tissue level. This characterisation of the ß-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of ß-AR in physiology and pathophysiology and the pharmacological effects of ß-AR inhibitors.

2.
J Pharmacol Sci ; 154(4): 274-278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485345

ABSTRACT

2-Deoxy-d-glucose (2DG) induces anticancer effects through glycolytic inhibition but it may raise the risk of arrhythmia. The rare monosaccharide d-allose also has anticancer properties, but its cardiac effects are unknown. We examined the effects of d-allose on adenosine triphosphate (ATP) production in neonatal rat cardiomyocytes. We showed that 25 mM d-allose selectively reduced glycolytic ATP, but had minimal impact on mitochondrial ATP, while 1 mM 2DG strongly inhibited both. Furthermore, d-allose had less impact on cell viability and was less cytotoxic than 2DG; neither compound caused apoptosis. Thus, d-allose selectively diminished glycolytic ATP production with no apparent effects on cardiomyocytes.


Subject(s)
Adenosine Triphosphate , Myocytes, Cardiac , Rats , Animals , Animals, Newborn , Cell Survival , Glucose/pharmacology
3.
Anticancer Res ; 44(5): 1895-1903, 2024 May.
Article in English | MEDLINE | ID: mdl-38677730

ABSTRACT

BACKGROUND/AIM: The present study investigated the anticancer effects of intraperitoneally administered D-allose in in vivo models of head and neck cancer cell lines. MATERIALS AND METHODS: To assess the direct effects of D-allose, its dynamics in blood and tumor tissues were examined. RESULTS: D-allose was detected in blood and tumor tissues 10 min after its intraperitoneal administration and then gradually decreased. In vivo experiments revealed that radiation plus D-allose was more effective than either treatment alone. Thioredoxin-interacting protein (TXNIP) mRNA over-expression was detected after the addition of D-allose in in vitro and in vivo experiments. D-allose inhibited cell growth, which was associated with decreases in glycolysis and intracellular ATP levels and the prolonged activation of AMPK. The phosphorylation of p38-MAPK was also observed early after the administration of D-allose and was followed by the activation of AMPK and up-regulated expression of TXNIP in both in vitro and in vivo experiments. CONCLUSION: Systemically administered D-allose appears to exert antitumor effects. Further studies are needed to clarify the appropriate dosage and timing of the administration of D-allose and its combination with other metabolic agents.


Subject(s)
Glucose , Head and Neck Neoplasms , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Energy Metabolism/drug effects , Glucose/metabolism , Glycolysis/drug effects , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Mice, Nude , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL