Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(13): 2270-2274, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29803730

ABSTRACT

The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Drug Design , Piperazines/pharmacokinetics , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Stilbenes/pharmacokinetics , Animals , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Guinea Pigs , Half-Life , Microsomes, Liver/metabolism , Piperazines/chemical synthesis , Piperazines/chemistry , Stereoisomerism , Stilbenes/chemical synthesis , Stilbenes/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(23): 5825-5829, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27789139

ABSTRACT

Metabolic Syndrome, also referred to as 'Syndrome X' or 'Insulin Resistance Syndrome,' remains a major, unmet medical need despite over 30years of intense effort. Recent research suggests that there may be a causal link between this condition and abnormal glucocorticoid processing. Specifically, dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis leads to increased systemic cortisol concentrations. Cushing' syndrome, a disorder that is also typified by a marked elevation in levels of cortisol, produces clinical symptomology that is similar to those observed in MetS, and they can be alleviated by decreasing circulating cortisol concentrations. As a result, it has been suggested that decreasing systemic cortisol concentration might have a positive impact on the progression of MetS. This could be accomplished through inhibition of enzymes in the cortisol synthetic pathway, 11ß-hydroxylase (Cyp11B1), 17α-hydroxylase-C17,20-lyase (Cyp17), and 21-hydroxylase (Cyp21). We have identified a series of novel sulfonamide analogs of (2S,4R)-Ketoconazole that are potent inhibitors of these enzymes. In addition, selected members of this class of compounds have pharmacokinetic properties consistent with orally delivered drugs, making them well suited to further investigation as potential therapies for MetS.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Ketoconazole/analogs & derivatives , Ketoconazole/pharmacology , Metabolic Syndrome/drug therapy , Sulfonamides/chemistry , Sulfonamides/pharmacology , Animals , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Drug Design , Female , Guinea Pigs , Humans , Ketoconazole/pharmacokinetics , Male , Metabolic Syndrome/enzymology , Sulfonamides/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL