ABSTRACT
Polygenic risk scores (PRS) have potential to improve health care by identifying individuals that have elevated risk for common complex conditions. Use of PRS in clinical practice, however, requires careful assessment of the needs and capabilities of patients, providers, and health care systems. The electronic Medical Records and Genomics (eMERGE) network is conducting a collaborative study which will return PRS to 25,000 pediatric and adult participants. All participants will receive a risk report, potentially classifying them as high risk (â¼2-10% per condition) for 1 or more of 10 conditions based on PRS. The study population is enriched by participants from racial and ethnic minority populations, underserved populations, and populations who experience poorer medical outcomes. All 10 eMERGE clinical sites conducted focus groups, interviews, and/or surveys to understand educational needs among key stakeholders-participants, providers, and/or study staff. Together, these studies highlighted the need for tools that address the perceived benefit/value of PRS, types of education/support needed, accessibility, and PRS-related knowledge and understanding. Based on findings from these preliminary studies, the network harmonized training initiatives and formal/informal educational resources. This paper summarizes eMERGE's collective approach to assessing educational needs and developing educational approaches for primary stakeholders. It discusses challenges encountered and solutions provided.
Subject(s)
Electronic Health Records , Ethnicity , Adult , Humans , Child , Minority Groups , Risk Factors , GenomicsABSTRACT
PURPOSE: A critical gap in the adoption of genomic medicine into medical practice is the need for the rigorous evaluation of the utility of genomic medicine interventions. METHODS: The Implementing Genomics in Practice Pragmatic Trials Network (IGNITE PTN) was formed in 2018 to measure the clinical utility and cost-effectiveness of genomic medicine interventions, to assess approaches for real-world application of genomic medicine in diverse clinical settings, and to produce generalizable knowledge on clinical trials using genomic interventions. Five clinical sites and a coordinating center evaluated trial proposals and developed working groups to enable their implementation. RESULTS: Two pragmatic clinical trials (PCTs) have been initiated, one evaluating genetic risk APOL1 variants in African Americans in the management of their hypertension, and the other to evaluate the use of pharmacogenetic testing for medications to manage acute and chronic pain as well as depression. CONCLUSION: IGNITE PTN is a network that carries out PCTs in genomic medicine; it is focused on diversity and inclusion of underrepresented minority trial participants; it uses electronic health records and clinical decision support to deliver the interventions. IGNITE PTN will develop the evidence to support (or oppose) the adoption of genomic medicine interventions by patients, providers, and payers.
Subject(s)
Decision Support Systems, Clinical , Genomics , Apolipoprotein L1 , Electronic Health Records , Humans , Pharmacogenomic Testing , Precision MedicineABSTRACT
OBJECTIVE: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled "Developing a Clinical Genomic Informatics Research Agenda". The meeting's goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings. MATERIALS AND METHODS: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting's goals. Invitees were also asked to complete a survey to assess important considerations needed to develop a genomic-based clinical informatics research strategy. RESULTS: Outcomes from the meeting included identifying short-term research needs, such as designing and implementing standards-based interfaces between laboratory information systems and electronic health records, as well as long-term projects, such as identifying and addressing barriers related to the establishment and implementation of genomic data exchange systems that, in turn, the research community could help address. DISCUSSION: Discussions centered on identifying gaps and barriers that impede the use of GCIT in genomic medicine. Emergent themes from the meeting included developing an implementation science framework, defining a value proposition for all stakeholders, fostering engagement with patients and partners to develop applications under patient control, promoting the use of relevant clinical workflows in research, and lowering related barriers to regulatory processes. Another key theme was recognizing pervasive biases in data and information systems, algorithms, access, value, and knowledge repositories and identifying ways to resolve them.
Subject(s)
Medical Informatics , Electronic Health Records , Genome, Human , Genomics , Humans , Research DesignABSTRACT
The Institute for Pharmacogenomics and Individualized Therapy (IPIT) at the University of North Carolina at Chapel Hill (NC, USA) is a collaborative, multidisciplinary unit that brings together faculty from different disciplines and crosses the traditional departmental/school structure to perform pharmacogenomics research. IPIT investigators work together towards the goal of developing therapies to enable the delivery of individualized medical care. The NIH-supported Comprehensive Research on Expressed Alleles in Therapeutic Evaluation (CREATE) group leads the field in the evaluation of pathways regulating drug activity, and also provides a foundation for future IPIT research. IPIT members perform bench research, clinical cohort analysis and prospective clinical intervention studies, research on the integration of pharmacogenomic therapy into practice and research to foster global health pharmacogenomics application through the Pharmacogenetics for Every Nation Initiative. IPIT Investigators are actively incorporating a pharmacogenomics curriculum into existing teaching programs at all levels.