Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Anal Chem ; 96(2): 615-619, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38165272

ABSTRACT

STD NMR spectroscopy is a powerful ligand-observed NMR tool for screening and characterizing the interactions of small molecules and low molecular weight fragments with a given macromolecule, identifying the main intermolecular contacts in the bound state. It is also a powerful analytical technique for the accurate determination of protein-ligand dissociation constants (KD) of medium-to-weak affinity, of interest in the pharmaceutical industry. However, accurate KD determination and epitope mapping requires a long series of experiments at increasing saturation times to carry out a full analysis using the so-called STD NMR build-up curve approach and apply the "initial slopes approximation". Here, we have developed a new protocol to bypass this important limitation, which allows us to obtain initial slopes by using just two saturation times and, hence, to very quickly determine precise protein-ligand dissociation constants by STD NMR.


Subject(s)
Magnetic Resonance Imaging , Proteins , Ligands , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Epitope Mapping , Protein Binding
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731888

ABSTRACT

The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.


Subject(s)
Antithrombins , Heparin , Oligosaccharides , Humans , Antithrombins/chemistry , Antithrombins/metabolism , Binding Sites , Epitope Mapping/methods , Heparin/chemistry , Heparin/metabolism , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Binding , Solvents/chemistry
3.
J Am Chem Soc ; 145(48): 26009-26015, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37979136

ABSTRACT

Lectins are capable of reading out the structural information contained in carbohydrates through specific recognition processes. Determining the binding epitope of the sugar is fundamental to understanding this recognition event. Nuclear magnetic resonance (NMR) is a powerful tool to obtain this structural information in solution; however, when the sugar involved is a complex oligosaccharide, such as high mannose, the signal overlap found in the NMR spectra precludes an accurate analysis of the interaction. The introduction of tags into these complex oligosaccharides could overcome these problems and facilitate NMR studies. Here, we show the preparation of the Man9 of high mannose with some fluorine tags and the study of the interaction with its receptor, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). This fluorinated ligand has allowed us to apply heteronuclear two-dimensional (2D) 1H,19F STD-TOCSYreF NMR experiments, using the initial slope approach, which has facilitated the analysis of the Man9/DC-SIGN interaction, unequivocally providing the binding epitope.


Subject(s)
Lectins, C-Type , Mannose , Humans , Mannose/chemistry , Lectins, C-Type/metabolism , Oligosaccharides/chemistry , Sugars , Magnetic Resonance Spectroscopy , Epitopes , Dendritic Cells
4.
J Am Chem Soc ; 144(28): 13006-13017, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35786909

ABSTRACT

A dual catalyst system based on ligand exchange of two diphosphine ligands possessing different properties in a copper complex has been devised to merge metal- and photocatalytic activation modes. This strategy has been applied to the formal anti-hydroboration of activated internal alkynes via a tandem sequence in which Cu/Xantphos catalyzes the B2pin2-syn-hydroboration of the alkyne whereas Cu/BINAP serves as a photocatalyst for visible light-mediated isomerization of the resulting alkenyl boronic ester. Photochemical studies by means of UV-vis absorption, steady-state and time-resolved fluorescence, and transient absorption spectroscopy have allowed characterizing the photoactive Cu/BINAP species in the isomerization reaction and its interaction with the intermediate syn-alkenyl boronic ester through energy transfer from the triplet excited state of the copper catalyst. In addition, mechanistic studies shed light into catalyst speciation and the interplay between the two catalytic cycles as critical success factors.


Subject(s)
Alkynes , Copper , Alkynes/chemistry , Boron/chemistry , Catalysis , Copper/chemistry , Esters , Ligands
5.
J Med Chem ; 67(12): 10025-10034, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38848103

ABSTRACT

Low-affinity protein-ligand interactions are important for many biological processes, including cell communication, signal transduction, and immune responses. Structural characterization of these complexes is also critical for the development of new drugs through fragment-based drug discovery (FBDD), but it is challenging due to the low affinity of fragments for the binding site. Saturation transfer difference (STD) NMR spectroscopy has revolutionized the study of low-affinity receptor-ligand interactions enabling binding detection and structural characterization. Comparison of relaxation and exchange matrix calculations with 1H STD NMR experimental data is essential for the validation of 3D structures of protein-ligand complexes. In this work, we present a new approach based on the calculation of a reduced relaxation matrix, in combination with funnel metadynamics MD simulations, that allows a very fast generation of experimentally STD-NMR-validated 3D structures of low-affinity protein-ligand complexes.


Subject(s)
Proteins , Ligands , Proteins/chemistry , Proteins/metabolism , Molecular Dynamics Simulation , Models, Molecular , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Humans , Protein Binding , Binding Sites , Drug Discovery
6.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015178

ABSTRACT

In recent years, Saturation Transfer Difference NMR (STD NMR) has been proven to be a powerful and versatile ligand-based NMR technique to elucidate crucial aspects in the investigation of protein-ligand complexes. Novel STD NMR approaches relying on "multi-frequency" irradiation have enabled us to even elucidate specific ligand-amino acid interactions and explore the binding of fragments in previously unknown binding subsites. Exploring multi-subsite protein binding pockets is especially important in Fragment Based Drug Discovery (FBDD) to design leads of increased specificity and efficacy. We hereby propose a novel multi-frequency STD NMR approach based on direct irradiation of one of the ligands in a multi-ligand binding process, to probe the vicinity and explore the relative orientation of fragments in adjacent binding sub-sites, which we called Inter-Ligand STD NMR (IL-STD NMR). We proved its applicability on (i) a standard protein-ligand system commonly used for ligand-observed NMR benchmarking: Naproxen as bound to Bovine Serum Albumin, and (ii) the biologically relevant system of Cholera Toxin Subunit B and two inhibitors adjacently bound within the GM1 binding site. Relative to Inter-Ligand NOE (ILOE), the current state-of-the-art methodology to probe relative orientations of adjacent ligands, IL-STD NMR requires about one tenth of the experimental time and protein consumption, making it a competitive methodology with the potential to be applied in the pharmaceutical industries.

SELECTION OF CITATIONS
SEARCH DETAIL