Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065082

ABSTRACT

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Tumor Microenvironment , Humans , Chromosomal Instability/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , p21-Activated Kinases/genetics , Phylogeny , Mutation , Disease Progression , Prognosis
2.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34910928

ABSTRACT

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Subject(s)
Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Tumor Microenvironment , Adaptive Immunity , Adenoma/genetics , Adenoma/pathology , Adult , Aged , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Death , Cell Differentiation , Colonic Polyps/genetics , Colonic Polyps/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Heterogeneity , Humans , Male , Mice , Middle Aged , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA-Seq , Reproducibility of Results , Single-Cell Analysis , Tumor Microenvironment/immunology
3.
Prostate ; 84(5): 441-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38168866

ABSTRACT

BACKGROUND: The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD: Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS: Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS: Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.


Subject(s)
5-alpha Reductase Inhibitors , Prostatic Hyperplasia , Male , Humans , 5-alpha Reductase Inhibitors/pharmacology , 5-alpha Reductase Inhibitors/therapeutic use , Prostate/pathology , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Critical Pathways , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Interleukin-13/therapeutic use , Interleukin-6 , Hedgehog Proteins , Adrenergic alpha-Antagonists/therapeutic use , Gene Expression Profiling , Drug Therapy, Combination , Chromatin
4.
Proteomics ; : e2300030, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37926756

ABSTRACT

Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells. Proteomic analysis of purified SEVs revealed that extracellular matrix (ECM) proteins and integrins are highly enriched in SEVs of non-NE cells whereas nucleic acid-binding proteins are enriched in SEVs purified from NE cells. Addition of select purified ECM proteins identified in purified extracellular vesicles (EVs), specifically fibronectin, laminin 411, and laminin 511, were able to substitute for the role of non-NE-derived SEVs in promoting adhesion and survival of NE SCLC cells. Those same proteins were differentially expressed by human SCLC subtypes. These data suggest that ECM-carrying SEVs secreted by non-NE cells play a key role in supporting the growth and survival of NE SCLC cells.

5.
Prostate ; 81(13): 944-955, 2021 09.
Article in English | MEDLINE | ID: mdl-34288015

ABSTRACT

BACKGROUND: Little is known about how benign prostatic hyperplasia (BPH) develops and why patients respond differently to medical therapy designed to reduce lower urinary tract symptoms (LUTS). The Medical Therapy of Prostatic Symptoms (MTOPS) trial randomized men with symptoms of BPH and followed response to medical therapy for up to 6 years. Treatment with a 5α-reductase inhibitor (5ARI) or an alpha-adrenergic receptor antagonist (α-blocker) reduced the risk of clinical progression, while men treated with combination therapy showed a 66% decrease in risk of progressive disease. However, medical therapies for BPH/LUTS are not effective in many patients. The reasons for nonresponse or loss of therapeutic response in the remaining patients over time are unknown. A better understanding of why patients fail to respond to medical therapy may have a major impact on developing new approaches for the medical treatment of BPH/LUTS. Prostaglandins (PG) act on G-protein-coupled receptors (GPCRs), where PGE2 and PGF2 elicit smooth muscle contraction. Therefore, we measured PG levels in the prostate tissue of BPH/LUTS patients to assess the possibility that this signaling pathway might explain the failure of medical therapy in BPH/LUTS patients. METHOD: Surgical BPH (S-BPH) was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy and underwent surgical intervention to relieve LUTS. Control tissue was termed Incidental BPH (I-BPH). I-BPH was TZ obtained from men undergoing radical prostatectomy for low-volume, low-grade prostatic adenocarcinoma (PCa, Gleason score ≤ 7) confined to the peripheral zone. All TZ tissue was confirmed to be cancer-free. S-BPH patients divided into four subgroups: patients on α-blockers alone, 5ARI alone, combination therapy (α-blockers plus 5ARI), or no medical therapy (none) before surgical resection. I-BPH tissue was subgrouped by prior therapy (either on α-blockers or without prior medical therapy before prostatectomy). We measured prostatic tissue levels of prostaglandins (PGF2α , PGI2 , PGE2 , PGD2 , and TxA2 ), quantitative polymerase chain reaction levels of mRNAs encoding enzymes within the PG synthesis pathway, cellular distribution of COX1 (PTGS1) and COX2 (PTGS2), and tested the ability of PGs to contract bladder smooth muscle in an in vitro assay. RESULTS: All PGs were significantly elevated in TZ tissues from S-BPH patients (n = 36) compared to I-BPH patients (n = 15), regardless of the treatment subgroups. In S-BPH versus I-BPH, mRNA for PG synthetic enzymes COX1 and COX2 were significantly elevated. In addition, mRNA for enzymes that convert the precursor PGH2 to metabolite PGs were variable: PTGIS (which generates PGI2 ) and PTGDS (PGD2 ) were significantly elevated; nonsignificant increases were observed for PTGES (PGE2 ), AKR1C3 (PGF2α ), and TBxAS1 (TxA2 ). Within the I-BPH group, men responding to α-blockers for symptoms of BPH but requiring prostatectomy for PCa did not show elevated levels of COX1, COX2, or PGs. By immunohistochemistry, COX1 was predominantly observed in the prostatic stroma while COX2 was present in scattered luminal cells of isolated prostatic glands in S-BPH. PGE2 and PGF2α induced contraction of bladder smooth muscle in an in vitro assay. Furthermore, using the smooth muscle assay, we demonstrated that α-blockers that inhibit alpha-adrenergic receptors do not appear to inhibit PG stimulation of GPCRs in bladder muscle. Only patients who required surgery to relieve BPH/LUTS symptoms showed significantly increased tissue levels of PGs and the PG synthetic enzymes. CONCLUSIONS: Treatment of BPH/LUTS by inhibition of alpha-adrenergic receptors with pharmaceutical α-blockers or inhibiting androgenesis with 5ARI may fail because of elevated paracrine signaling by prostatic PGs that can cause smooth muscle contraction. In contrast to patients who fail medical therapy for BPH/LUTS, control I-BPH patients do not show the same evidence of elevated PG pathway signaling. Elevation of the PG pathway may explain, in part, why the risk of clinical progression in the MTOPS study was only reduced by 34% with α-blocker treatment.


Subject(s)
Lower Urinary Tract Symptoms/drug therapy , Prostaglandins/metabolism , Prostate/metabolism , Prostatic Hyperplasia/drug therapy , 5-alpha Reductase Inhibitors/therapeutic use , Adrenergic alpha-Antagonists/therapeutic use , Aged , Humans , Lower Urinary Tract Symptoms/etiology , Lower Urinary Tract Symptoms/metabolism , Male , Middle Aged , Prostatic Hyperplasia/complications , Prostatic Hyperplasia/metabolism , Treatment Failure
6.
Gastroenterology ; 159(6): 2101-2115.e5, 2020 12.
Article in English | MEDLINE | ID: mdl-32828819

ABSTRACT

BACKGROUND & AIMS: Countries endemic for parasitic infestations have a lower incidence of Crohn's disease (CD) than nonendemic countries, and there have been anecdotal reports of the beneficial effects of helminths in CD patients. Tuft cells in the small intestine sense and direct the immune response against eukaryotic parasites. We investigated the activities of tuft cells in patients with CD and mouse models of intestinal inflammation. METHODS: We used microscopy to quantify tuft cells in intestinal specimens from patients with ileal CD (n = 19), healthy individuals (n = 14), and TNFΔARE/+ mice, which develop Crohn's-like ileitis. We performed single-cell RNA sequencing, mass spectrometry, and microbiome profiling of intestinal tissues from wild-type and Atoh1-knockout mice, which have expansion of tuft cells, to study interactions between microbes and tuft cell populations. We assessed microbe dependence of tuft cell populations using microbiome depletion, organoids, and microbe transplant experiments. We used multiplex imaging and cytokine assays to assess alterations in inflammatory response following expansion of tuft cells with succinate administration in TNFΔARE/+ and anti-CD3E CD mouse models. RESULTS: Inflamed ileal tissues from patients and mice had reduced numbers of tuft cells, compared with healthy individuals or wild-type mice. Expansion of tuft cells was associated with increased expression of genes that regulate the tricarboxylic acid cycle, which resulted from microbe production of the metabolite succinate. Experiments in which we manipulated the intestinal microbiota of mice revealed the existence of an ATOH1-independent population of tuft cells that was sensitive to metabolites produced by microbes. Administration of succinate to mice expanded tuft cells and reduced intestinal inflammation in TNFΔARE/+ mice and anti-CD3E-treated mice, increased GATA3+ cells and type 2 cytokines (IL22, IL25, IL13), and decreased RORGT+ cells and type 17 cytokines (IL23) in a tuft cell-dependent manner. CONCLUSIONS: We found that tuft cell expansion reduced chronic intestinal inflammation in mice. Strategies to expand tuft cells might be developed for treatment of CD.


Subject(s)
Chemoreceptor Cells/immunology , Crohn Disease/immunology , Gastrointestinal Microbiome/immunology , Ileitis/immunology , Intestinal Mucosa/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Chemoreceptor Cells/pathology , Crohn Disease/microbiology , Crohn Disease/pathology , DNA, Bacterial/genetics , Disease Models, Animal , Feces/microbiology , Female , Humans , Ileitis/microbiology , Ileitis/pathology , Ileum/cytology , Ileum/immunology , Ileum/microbiology , Ileum/pathology , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Protective Factors , RNA, Ribosomal, 16S/genetics , RNA-Seq , Single-Cell Analysis , Succinic Acid/immunology , Succinic Acid/metabolism
7.
BMC Genomics ; 21(1): 456, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616006

ABSTRACT

BACKGROUND: The increasing demand of single-cell RNA-sequencing (scRNA-seq) experiments, such as the number of experiments and cells queried per experiment, necessitates higher sequencing depth coupled to high data quality. New high-throughput sequencers, such as the Illumina NovaSeq 6000, enables this demand to be filled in a cost-effective manner. However, current scRNA-seq library designs present compatibility challenges with newer sequencing technologies, such as index-hopping, and their ability to generate high quality data has yet to be systematically evaluated. RESULTS: Here, we engineered a dual-indexed library structure, called TruDrop, on top of the inDrop scRNA-seq platform to solve these compatibility challenges, such that TruDrop libraries and standard Illumina libraries can be sequenced alongside each other on the NovaSeq. On scRNA-seq libraries, we implemented a previously-documented countermeasure to the well-described problem of index-hopping, demonstrated significant improvements in base-calling accuracy on the NovaSeq, and provided an example of multiplexing twenty-four scRNA-seq libraries simultaneously. We showed favorable comparisons in transcriptional diversity of TruDrop compared with prior inDrop libraries. CONCLUSIONS: Our approach enables cost-effective, high throughput generation of sequencing data with high quality, which should enable more routine use of scRNA-seq technologies.


Subject(s)
High-Throughput Nucleotide Sequencing , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Humans , Mice , Sequence Alignment , Sequence Analysis, RNA/standards , Single-Cell Analysis/standards
8.
Prostate ; 80(10): 731-741, 2020 07.
Article in English | MEDLINE | ID: mdl-32356572

ABSTRACT

BACKGROUND: Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS: Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1ß and TGF-ß1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS: OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-ß1 stimulated OPN secretion by NHPrE-1 cells and both IL-1ß and TGF-ß1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS: OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.


Subject(s)
Osteopontin/biosynthesis , Prostatic Hyperplasia/metabolism , Chemokines, CXC/biosynthesis , Chemokines, CXC/genetics , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Humans , Immunohistochemistry , Interleukin-6/biosynthesis , Interleukin-6/genetics , Male , Osteopontin/genetics , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Stromal Cells/metabolism , Stromal Cells/pathology
9.
Ann Rheum Dis ; 79(12): 1557-1564, 2020 12.
Article in English | MEDLINE | ID: mdl-32958509

ABSTRACT

OBJECTIVES: To determine if plasma microbial small RNAs (sRNAs) are altered in patients with rheumatoid arthritis (RA) compared with control subjects, associated with RA disease-related features, and altered by disease-modifying antirheumatic drugs (DMARDs). METHODS: sRNA sequencing was performed on plasma from 165 patients with RA and 90 matched controls and a separate cohort of 70 patients with RA before and after starting a DMARD. Genome alignments for RA-associated bacteria, representative bacterial and fungal human microbiome genomes and environmental bacteria were performed. Microbial genome counts and individual sRNAs were compared across groups and correlated with disease features. False discovery rate was set at 0.05. RESULTS: Genome counts of Lactobacillus salivarius, Anaerobaculum hydrogeniformans, Staphylococcus epidermidis, Staphylococcus aureus, Paenisporosarcina spp, Facklamia hominis, Sphingobacterium spiritivorum, Lentibacillus amyloliquefaciens, Geobacillus spp, and Pseudomonas fluorescens were significantly decreased in the plasma of RA compared with control subjects. Three microbial transfer RNA-derived sRNAs were increased in RA versus controls and inversely associated with disease activity. Higher total microbial sRNA reads were associated with lower disease activity in RA. Baseline total microbial sRNAs were threefold higher among patients who improved with DMARD versus those who did not but did not change significantly after 6 months of treatment. CONCLUSION: Plasma microbial sRNA composition is altered in RA versus control subjects and associated with some measures of RA disease activity. DMARD treatment does not alter microbial sRNA abundance or composition, but increased abundance of microbial sRNAs at baseline was associated with disease activity improvement at 6 months.


Subject(s)
Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/microbiology , RNA, Bacterial/blood , RNA, Fungal/blood , RNA, Small Untranslated/blood , Adult , Aged , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/pathology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , RNA, Bacterial/drug effects , RNA, Fungal/drug effects , RNA, Small Untranslated/drug effects
10.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G810-G823, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30160993

ABSTRACT

Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose-lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNAs (miRNAs) as regulators of metabolic disease and to investigate the link between the cholesterol and glucose-lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker diabetic fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared with vehicle controls. Inhibition of miR-182 in vivo attenuated colesevelam-mediated improvements to glycemic control in db/db mice. Hepatic expression of mediator complex subunit 1 (MED1), a nuclear receptor coactivator, was significantly decreased with colesevelam treatments in db/db mice, and MED1 was experimentally validated to be a direct target of miR-96/182/183 in humans and mice. In summary, these results support that colesevelam likely improves glycemic control through hepatic miR-182-5p, a mechanism that directly links cholesterol and glucose metabolism. NEW & NOTEWORTHY Colesevelam lowers systemic glucose levels in Zucker diabetic fatty rats and db/db mice and increases hepatic levels of the sterol response element binding protein 2-responsive microRNA cluster miR-96/182/183. Inhibition of miR-182 in vivo reverses the glucose-lowering effects of colesevelam in db/db mice. Mediator complex subunit 1 (MED1) is a novel, direct target of the miR-96/182/183 cluster in mice and humans.


Subject(s)
Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Intestinal Mucosa/metabolism , Liver/metabolism , MicroRNAs/genetics , Animals , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Colesevelam Hydrochloride/pharmacology , Colesevelam Hydrochloride/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Glycolysis , HEK293 Cells , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Male , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , MicroRNAs/metabolism , Rats , Rats, Zucker
11.
Exp Hematol ; : 104249, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848876

ABSTRACT

Inherited bone marrow failure syndromes often result from pathogenic mutations in genes that are important for ribosome function, namely, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita. Germline mutations in SAMD9 are a frequent genetic lesion resulting in an inherited bone marrow failure syndrome with monosomy 7; some patients have severe multisystem syndromes that include myelodysplasia. The association of germline SAMD9 mutations and bone marrow failure is clear; however, to date, there is no reliable method to predict whether a novel SAMD9 mutation is pathogenic unless it is accompanied by an obvious family history and/or clinical syndrome. The difficulty with pathogenicity prediction is, in part, due to the incomplete understanding of the biological functions of SAMD9. We used a SAMD9-targeted, inducible CRISPRa system and RNA sequencing to better understand the global transcriptional changes that result from transcriptional manipulation of SAMD9. Supporting recent discoveries that SAMD9 acts as a ACNase specific for phenylalanine tRNA (tRNA-Phe), we confirmed with crosslinking and solid-phase purification that SAMD9 is an RNA binding protein and analyzed how overexpression of tRNA-Phe may reverse transcriptomic changes caused by SAMD9 activation. Our data show that overexpression of SAMD9 from the endogenous locus results in decreased cell proliferation, cell cycle progression, and global protein translation. When SAMD9 contains a gain-of-function mutation (p.E1136Q), these functional phenotypes are exacerbated but only partially rescued with tRNA-Phe overexpression, suggesting additional molecular actions of SAMD9. Additionally, we demonstrate that gene expression pathways important for ribosome biogenesis and MYC signaling are the most significantly impacted by SAMD9 overexpression.

12.
Arthritis Rheumatol ; 76(5): 684-695, 2024 May.
Article in English | MEDLINE | ID: mdl-38111131

ABSTRACT

OBJECTIVE: High-density lipoprotein (HDL) has well-characterized anti-atherogenic cholesterol efflux and antioxidant functions. Another function of HDL uncharacterized in rheumatoid arthritis (RA) is its ability to transport microRNAs (miRNAs) between cells and thus alter cellular function. The study's purpose was to determine if HDL-miRNA cargo is altered and affects inflammation in RA. METHODS: HDL-microRNAs were characterized in 30 RA and 30 control participants by next generation sequencing and quantitative polymerase chain reaction. The most abundant differentially expressed miRNA was evaluated further. The function of miR-1246 was assessed by miRNA mimics, antagomiRs, small interfering RNA knockdown, and luciferase assays. Monocyte-derived macrophages were treated with miR-1246-loaded HDL and unmodified HDL from RA and control participants to measure delivery of miR-1246 and its effect on interleukin-6 (IL-6). RESULTS: The most abundant miRNA on HDL was miR-1246; it was significantly enriched two-fold on HDL from RA versus control participants. HDL-mediated miR-1246 delivery to macrophages significantly increased IL6 expression 43-fold. miR-1246 delivery significantly decreased DUSP3 1.5-fold and DUSP3 small interfering RNA knockdown increased macrophage IL6 expression. Luciferase assay indicated DUSP3 is a direct target of miR-1246. Unmodified HDL from RA delivered 1.6-fold more miR-1246 versus control participant HDL. Unmodified HDL from both RA and control participants attenuated activated macrophage IL6 expression, but this effect was significantly blunted in RA so that IL6 expression was 3.4-fold higher after RA versus control HDL treatment. CONCLUSION: HDL-miR-1246 was increased in RA versus control participants and delivery of miR-1246 to macrophages increased IL-6 expression by targeting DUSP3. The altered HDL-miRNA cargo in RA blunted HDL's anti-inflammatory effect.


Subject(s)
Arthritis, Rheumatoid , Interleukin-6 , Lipoproteins, HDL , Macrophages , MicroRNAs , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , MicroRNAs/metabolism , Lipoproteins, HDL/pharmacology , Lipoproteins, HDL/metabolism , Middle Aged , Male , Female , Interleukin-6/metabolism , Macrophages/metabolism , Case-Control Studies , Inflammation/metabolism , Adult , Aged
13.
Laryngoscope ; 134(4): 1757-1764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37787469

ABSTRACT

OBJECTIVES: Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Given the observed immune cell infiltrate in SGS, we sought to test the hypothesis that SGS cases possessed a low diversity (highly clonal) adaptive immune response when compared with healthy controls. METHODS: Single cell RNA sequencing (scRNA-seq) of subglottic mucosal scar in iSGS (n = 24), iLTS (n = 8), and healthy controls (n = 7) was performed. T cell receptor (TCR) sequences were extracted, analyzed, and used to construct repertoire structure, compare diversity, interrogate overlap, and define antigenic targets using the Immunarch bioinformatics pipeline. RESULTS: The proximal airway mucosa in health and disease are equally diverse via Hill framework quantitation (iSGS vs. iLTS vs. Control, p > 0.05). Repertoires do not significantly overlap between individuals (Morisita <0.02). Among iSGS patients, clonality of the TCR repertoire is driven by CD8+ T cells, and iSGS patients possess numerous TCRs targeting viral and intercellular pathogens. High frequency clonotypes do not map to known targets in public datasets. CONCLUSION: SGS cases do not possess a lower diversity adaptive immune infiltrate when compared with healthy controls. Interestingly, the TCR repertoire in both health and disease contains a restricted number of high frequency clonotypes that do not significantly overlap between individuals. The target of the high frequency clonotypes in health and disease remain unresolved. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1757-1764, 2024.


Subject(s)
Laryngostenosis , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes
14.
Laryngoscope ; 134(7): 3245-3252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38450771

ABSTRACT

OBJECTIVES: Recent immunologic study of the adaptive immune repertoire in the subglottic airway demonstrated high-frequency T cell clones that do not overlap between individuals. However, the anatomic distribution and antigenic target of the T cell repertoire in the proximal airway mucosa remain unresolved. METHODS: Single-cell RNA sequencing of matched scar and unaffected mucosa from idiopathic subglottic stenosis patients (iSGS, n = 32) was performed and compared with airway mucosa from healthy controls (n = 10). T cell receptor (TCR) sequences were interrogated via similarity network analysis to explore antigenic targets using the published algorithm: Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH2). RESULTS: The mucosal T cell repertoire in healthy control airways consisted of highly expressed T cell clones conserved across anatomic subsites (trachea, bronchi, bronchioles, and lung). In iSGS, high-frequency clones were equally represented in both scar and adjacent non-scar tissue. Significant differences in repertoire structure between iSGS scar and unaffected mucosa was observed, driven by unique low-frequency clones. GLIPH2 results suggest low-frequency clones share targets between multiple iSGS patients. CONCLUSION: Healthy airway mucosa has a highly conserved T cell repertoire across multiple anatomic subsites. Similarly, iSGS patients have highly expressed T cell clones present in both scar and unaffected mucosa. iSGS airway scar possesses an abundance of less highly expanded clones with predicted antigen targets shared between patients. Interrogation of these shared motifs suggests abundant adaptive immunity to viral targets in iSGS airway scar. These results provide insight into disease pathogenesis and illuminate new treatment strategies in iSGS. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3245-3252, 2024.


Subject(s)
Adaptive Immunity , Laryngostenosis , Humans , Adaptive Immunity/immunology , Male , Female , Laryngostenosis/immunology , Middle Aged , T-Lymphocytes/immunology , Adult , Case-Control Studies , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Respiratory Mucosa/immunology , Aged , Single-Cell Analysis
15.
Lifestyle Genom ; 16(1): 165-176, 2023.
Article in English | MEDLINE | ID: mdl-37708875

ABSTRACT

INTRODUCTION: The metabolic syndrome (MetS) is a cluster of abnormalities related to cardiovascular disease (CVD). Circulating miRNAs (c-miRNAs) are non-coding RNAs associated with different phenotypes, some of them integrating the MetS. The aim of the study was to compare the c-miRNAs profile in plasma between women with MetS and controls and explore their possible association with dysregulation of metabolic pathways. METHODS: The study was conducted in two phases. At the screening phase, miRNA composition in fasting plasma was compared between 8 participants with MetS and 10 healthy controls, using microarray technology. The validation phase included the analysis by qRT-PCR of 10 selected c-miRNAs in an independent sample (n = 29). RESULTS: We found 21 c-miRNAs differentially expressed between cases and controls. The concentration in plasma of the c-miRNAs hsa-miR-1260a, hsa-miR-4514, and hsa-miR-4687-5p were also correlated with risk factors for CVD. Differences of hsa-miR-1260a between cases and controls were validated using qRT-PCR (fold-change = 7.0; p = 0.003). CONCLUSION: The signature of plasma c-miRNAs differed between women with MetS and controls. The identified miRNAs regulate pathways related to the MetS such as insulin resistance and adipokine activity. The role of c-miR-1260a in the MetS remains to be elucidated.


Subject(s)
Cardiovascular Diseases , Circulating MicroRNA , Metabolic Syndrome , MicroRNAs , Humans , Female , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Gene Expression Profiling , MicroRNAs/genetics , Microarray Analysis , Circulating MicroRNA/genetics
16.
Laryngoscope ; 133(12): 3506-3511, 2023 12.
Article in English | MEDLINE | ID: mdl-37382162

ABSTRACT

OBJECTIVES: Idiopathic subglottic stenosis (iSGS) is an unexplained progressive fibrosis of the upper airway. iSGS almost exclusively affects women; as a result, female hormones (estrogen and progesterone) have been proposed to participate in the pathogenesis of iSGS. Our aim was to localize cell-specific gene expression of estrogen receptors (ESR1 and ESR2) and progesterone receptor (PGR) using an established iSGS single-cell RNA sequencing (scRNAseq) cell atlas. STUDY DESIGN: Ex vivo molecular study of airway scar and healthy mucosa from iSGS patients. METHODS: An established scRNAseq atlas consisting of 25,974 individually sequenced cells from subglottic scar (n = 7) or matched unaffected mucosa (n = 3) in iSGS patients was interrogated for RNA expression of ESR1, ESR2, and PGR. Results were quantified and compared across cell subsets, then visualized using Uniform Manifold Approximation and Projection (UMAP). Confirmatory protein assessment of endocrine receptors in fibroblasts from iSGS patients (n = 5) was performed via flow cytometry. RESULTS: The proximal airway mucosa in iSGS patients demonstrates differential expression of endocrine receptors (ESR1, ESR2, PGR). Within airway scar, endocrine receptors are primarily expressed by fibroblasts, immune cells, and endothelial cells. Fibroblasts show strong ESR1 and PGR expression, while immune cells possess RNA for both ESR1 and ESR2. Endothelial cells predominantly express ESR2. Epithelial cells in unaffected mucosa express all three receptors, which are all reduced in airway scar. CONCLUSIONS: scRNAseq data localized endocrine receptor expression to specific cell subsets. These results provide the foundation for future work interrogating how hormone-dependent mechanisms promote, sustain, or participate in iSGS disease pathogenesis. LEVEL OF EVIDENCE: NA; Basic science Laryngoscope, 133:3506-3511, 2023.


Subject(s)
Cicatrix , Laryngostenosis , Humans , Female , Cicatrix/pathology , Endothelial Cells/pathology , Constriction, Pathologic/complications , Laryngostenosis/pathology , Gene Expression , Estrogens , RNA
17.
Laryngoscope ; 133(11): 3049-3056, 2023 11.
Article in English | MEDLINE | ID: mdl-37102306

ABSTRACT

OBJECTIVES: Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Yet despite recent advances, the genetic basis of SGS remains poorly understood. We sought to identify candidate risk genes associated with an SGS phenotype, investigate their biological function, and identify the cell types enriched for their expression. METHODS: The Online Mendelian Inheritance in Man (OMIM) database was queried for single gene variants associated with an SGS phenotype. The functional intersections and molecular roles of the identified genes were explored using pathway enrichment analysis (PEA) computational methods. Cellular localization of the candidate risk genes was measured via transcriptional quantification in an established single cell RNA sequencing (scRNA-seq) atlas of the proximal airway. RESULTS: Twenty genes associated with SGS phenotype were identified. PEA resulted in 24 significantly enriched terms including "cellular response to TGF-ß," "epithelial-to-mesenchymal transition," and "adherens junctions." Mapping the 20 candidate risk genes to the scRNA-seq atlas found 3 (15%) genes were enriched in epithelial cells, 3 (15%) in fibroblasts, and 3 (15%) in endothelial cells. 11 (55%) genes were expressed ubiquitously among tissue types. Interestingly, immune cells were not significantly enriched for candidate risk genes. CONCLUSION: We identify and provide biologic context for 20 genes associated with fibrotic disease of the proximal airway and form the foundation for future detailed genetic study. LEVEL OF EVIDENCE: N/A Laryngoscope, 133:3049-3056, 2023.


Subject(s)
Genetic Predisposition to Disease , Laryngostenosis , Humans , Constriction, Pathologic , Genetic Predisposition to Disease/genetics , Endothelial Cells/metabolism , Fibrosis
18.
bioRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38187699

ABSTRACT

Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.

19.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873404

ABSTRACT

Crohn's disease (CD) is a complex chronic inflammatory disorder that may affect any part of gastrointestinal tract with extra-intestinal manifestations and associated immune dysregulation. To characterize heterogeneity in CD, we profiled single-cell transcriptomics of 170 samples from 65 CD patients and 18 non-inflammatory bowel disease (IBD) controls in both the terminal ileum (TI) and ascending colon (AC). Analysis of 202,359 cells identified a novel epithelial cell type in both TI and AC, featuring high expression of LCN2, NOS2, and DUOX2, and thus is named LND. LND cells, confirmed by high-resolution in-situ RNA imaging, were rarely found in non-IBD controls, but expanded significantly in active CD. Compared to other epithelial cells, genes defining LND cells were enriched in antimicrobial response and immunoregulation. Moreover, multiplexed protein imaging demonstrated that LND cell abundance was associated with immune infiltration. Cross-talk between LND and immune cells was explored by ligand-receptor interactions and further evidenced by their spatial colocalization. LND cells showed significant enrichment of expression specificity of IBD/CD susceptibility genes, revealing its role in immunopathogenesis of CD. Investigating lineage relationships of epithelial cells detected two LND cell subpopulations with different origins and developmental potential, early and late LND. The ratio of the late to early LND cells was related to anti-TNF response. These findings emphasize the pathogenic role of the specialized LND cell type in both Crohn's ileitis and Crohn's colitis and identify novel biomarkers associated with disease activity and treatment response.

20.
Nat Cell Biol ; 24(12): 1701-1713, 2022 12.
Article in English | MEDLINE | ID: mdl-36474072

ABSTRACT

Macrophages present a spectrum of phenotypes that mediate both the pathogenesis and resolution of atherosclerotic lesions. Inflammatory macrophage phenotypes are pro-atherogenic, but the stimulatory factors that promote these phenotypes remain incompletely defined. Here we demonstrate that microbial small RNAs (msRNA) are enriched on low-density lipoprotein (LDL) and drive pro-inflammatory macrophage polarization and cytokine secretion via activation of the RNA sensor toll-like receptor 8 (TLR8). Removal of msRNA cargo during LDL re-constitution yields particles that readily promote sterol loading but fail to stimulate inflammatory activation. Competitive antagonism of TLR8 with non-targeting locked nucleic acids was found to prevent native LDL-induced macrophage polarization in vitro, and re-organize lesion macrophage phenotypes in vivo, as determined by single-cell RNA sequencing. Critically, this was associated with reduced disease burden in distinct mouse models of atherosclerosis. These results identify LDL-msRNA as instigators of atherosclerosis-associated inflammation and support alternative functions of LDL beyond cholesterol transport.


Subject(s)
Macrophages , Toll-Like Receptor 8 , Animals , Mice , Toll-Like Receptor 8/genetics , RNA
SELECTION OF CITATIONS
SEARCH DETAIL