Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nature ; 581(7809): 475-479, 2020 05.
Article in English | MEDLINE | ID: mdl-32461639

ABSTRACT

Intestinal health relies on the immunosuppressive activity of CD4+ regulatory T (Treg) cells1. Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1)2-4. Products of microbial fermentation including butyrate facilitate the generation of peripherally induced Treg (pTreg) cells5-7, indicating that metabolites shape the composition of the colonic immune cell population. In addition to dietary components, bacteria modify host-derived molecules, generating a number of biologically active substances. This is epitomized by the bacterial transformation of bile acids, which creates a complex pool of steroids8 with a range of physiological functions9. Here we screened the major species of deconjugated bile acids for their ability to potentiate the differentiation of pTreg cells. We found that the secondary bile acid 3ß-hydroxydeoxycholic acid (isoDCA) increased Foxp3 induction by acting on dendritic cells (DCs) to diminish their immunostimulatory properties. Ablating one receptor, the farnesoid X receptor, in DCs enhanced the generation of Treg cells and imposed a transcriptional profile similar to that induced by isoDCA, suggesting an interaction between this bile acid and nuclear receptor. To investigate isoDCA in vivo, we took a synthetic biology approach and designed minimal microbial consortia containing engineered Bacteroides strains. IsoDCA-producing consortia increased the number of colonic RORγt-expressing Treg cells in a CNS1-dependent manner, suggesting enhanced extrathymic differentiation.


Subject(s)
Bacteria/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence , Animals , Bacteroides/metabolism , Colon/microbiology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Fermentation , Gastrointestinal Microbiome , Male , Mice , Mice, Inbred C57BL , Microbial Consortia , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
2.
Nature ; 572(7771): 665-669, 2019 08.
Article in English | MEDLINE | ID: mdl-31435014

ABSTRACT

Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.


Subject(s)
Bacteriocins/metabolism , Bacteriocins/pharmacology , Enterococcus faecium/drug effects , Lactococcus lactis/metabolism , Probiotics , Vancomycin Resistance/drug effects , Vancomycin-Resistant Enterococci/drug effects , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/isolation & purification , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Germ-Free Life , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Lactococcus lactis/chemistry , Lactococcus lactis/growth & development , Lactococcus lactis/physiology , Mice , Microbial Sensitivity Tests , Microbiota/genetics , Nisin/chemistry , Nisin/pharmacology , Symbiosis/drug effects , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/isolation & purification
3.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422819

ABSTRACT

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Subject(s)
Alleles , Aspartic Acid/metabolism , Brain Diseases/genetics , Fatty Acid-Binding Proteins/genetics , Malates/metabolism , Mutation , Animals , Child , Child, Preschool , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice , Exome Sequencing
4.
Blood ; 136(1): 130-136, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32430495

ABSTRACT

Studies of the relationship between the gastrointestinal microbiota and outcomes in allogeneic hematopoietic stem cell transplantation (allo-HCT) have thus far largely focused on early complications, predominantly infection and acute graft-versus-host disease (GVHD). We examined the potential relationship of the microbiome with chronic GVHD (cGVHD) by analyzing stool and plasma samples collected late after allo-HCT using a case-control study design. We found lower circulating concentrations of the microbe-derived short-chain fatty acids (SCFAs) propionate and butyrate in day 100 plasma samples from patients who developed cGVHD, compared with those who remained free of this complication, in the initial case-control cohort of transplant patients and in a further cross-sectional cohort from an independent transplant center. An additional cross-sectional patient cohort from a third transplant center was analyzed; however, serum (rather than plasma) was available, and the differences in SCFAs observed in the plasma samples were not recapitulated. In sum, our findings from the primary case-control cohort and 1 of 2 cross-sectional cohorts explored suggest that the gastrointestinal microbiome may exert immunomodulatory effects in allo-HCT patients at least in part due to control of systemic concentrations of microbe-derived SCFAs.


Subject(s)
Butyrates/blood , Gastrointestinal Microbiome , Graft vs Host Disease/microbiology , Propionates/blood , Adult , Allografts , Bacteria/isolation & purification , Bacteria/metabolism , Case-Control Studies , Chronic Disease , Dysbiosis/etiology , Dysbiosis/microbiology , Feces/microbiology , Graft vs Host Disease/blood , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Metabolome , Ribotyping
5.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30239721

ABSTRACT

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Subject(s)
Glutaminase/genetics , Glutaminase/physiology , Adolescent , Animals , Brain/metabolism , Cataract/genetics , Child, Preschool , Developmental Disabilities/genetics , Disease Models, Animal , Female , Fibroblasts , Gain of Function Mutation/genetics , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/physiology , Glutamic Acid/genetics , Glutamic Acid/metabolism , Glutamine/metabolism , HEK293 Cells , Humans , Male , Oxidative Stress , Reactive Oxygen Species/metabolism , Zebrafish
6.
Gastroenterology ; 152(6): 1462-1476.e10, 2017 05.
Article in English | MEDLINE | ID: mdl-28130067

ABSTRACT

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS: To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS: In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS: In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.


Subject(s)
Ammonia/metabolism , Glutamine/biosynthesis , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Urea/metabolism , Animals , Bile Acids and Salts/metabolism , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Dietary Proteins/administration & dosage , Gene Expression , Hepatocytes , Liver/enzymology , Male , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteome , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
7.
J Inherit Metab Dis ; 40(6): 883-891, 2017 11.
Article in English | MEDLINE | ID: mdl-28801717

ABSTRACT

Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.


Subject(s)
Serine/metabolism , Vitamin B 6/metabolism , Brain/metabolism , Cells, Cultured , Glycine/blood , Glycine/metabolism , Humans , Pyridoxal Phosphate/blood , Pyridoxal Phosphate/metabolism , Pyridoxine/blood , Serine/blood , Vitamin B 6/blood , Vitamin B 6 Deficiency/blood , Vitamin B 6 Deficiency/metabolism
8.
J Inherit Metab Dis ; 38(5): 889-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25647543

ABSTRACT

We present the first two reported unrelated patients with an isolated sedoheptulokinase (SHPK) deficiency. The first patient presented with neonatal cholestasis, hypoglycemia, and anemia, while the second patient presented with congenital arthrogryposis multiplex, multiple contractures, and dysmorphisms. Both patients had elevated excretion of erythritol and sedoheptulose, and each had a homozygous nonsense mutation in SHPK. SHPK is an enzyme that phosphorylates sedoheptulose to sedoheptulose-7-phosphate, which is an important intermediate of the pentose phosphate pathway. It is questionable whether SHPK deficiency is a causal factor for the clinical phenotypes of our patients. This study illustrates the necessity of extensive functional and clinical workup for interpreting a novel variant, including nonsense variants.


Subject(s)
Pentose Phosphate Pathway/genetics , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Anemia/complications , Anemia/genetics , Arthrogryposis/genetics , Child, Preschool , Cholestasis/complications , Cholestasis/genetics , Codon, Nonsense , Consanguinity , Female , Heptoses/metabolism , Humans , Hypoglycemia/complications , Hypoglycemia/genetics , Male , Phenotype , Sugar Phosphates/metabolism
9.
J Inherit Metab Dis ; 37(2): 245-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23974653

ABSTRACT

A reduced response of cystathionine beta-synthase (CBS) to its allosteric activator S-adenosylmethionine (SAM) has been reported to be a cause of CBS dysfunction in homocystinuria patients. In this work we performed a retrospective analysis of fibroblast data from 62 homocystinuria patients and found that 13 of them presented a disturbed SAM activation. Their genotypic background was identified and the corresponding CBS mutant proteins were produced in E. coli. Nine distinct mutations were detected in 22 independent alleles: the novel mutations p.K269del, p.P427L, p.S500L and p.L540Q; and the previously described mutations p.P49L, p.C165Rfs*2, p.I278T, p.R336H and p.D444N. Expression levels and residual enzyme activities, determined in the soluble fraction of E. coli lysates, strongly correlated with the localization of the affected amino acid residue. C-terminal mutations lead to activities in the range of the wild-type CBS and to oligomeric forms migrating faster than tetramers, suggesting an abnormal conformation that might be responsible for the lack of SAM activation. Mutations in the catalytic core were associated with low protein expression levels, decreased enzyme activities and a higher content of high molecular mass forms. Furthermore, the absence of SAM activation found in the patients' fibroblasts was confirmed for all but one of the characterized recombinant proteins (p.P49L). Our study experimentally supports a deficient regulation of CBS by SAM as a frequently found mechanism in CBS deficiency, which should be considered not only as a valuable diagnostic tool but also as a potential target for the development of new therapeutic approaches in classical homocystinuria.


Subject(s)
Cystathionine beta-Synthase/genetics , Homocystinuria/enzymology , Homocystinuria/genetics , Mutation , S-Adenosylmethionine/genetics , Alleles , Cells, Cultured , Cystathionine beta-Synthase/metabolism , Escherichia coli/genetics , Fibroblasts/enzymology , Fibroblasts/metabolism , Fibroblasts/pathology , Genotype , Homocystinuria/metabolism , Homocystinuria/pathology , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retrospective Studies , S-Adenosylmethionine/metabolism
10.
Nat Microbiol ; 9(3): 614-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429422

ABSTRACT

Microbial transformation of bile acids affects intestinal immune homoeostasis but its impact on inflammatory pathologies remains largely unknown. Using a mouse model of graft-versus-host disease (GVHD), we found that T cell-driven inflammation decreased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and reduced the levels of unconjugated and microbe-derived bile acids. Several microbe-derived bile acids attenuated farnesoid X receptor (FXR) activation, suggesting that loss of these metabolites during inflammation may increase FXR activity and exacerbate the course of disease. Indeed, mortality increased with pharmacological activation of FXR and decreased with its genetic ablation in donor T cells during mouse GVHD. Furthermore, patients with GVHD after allogeneic hematopoietic cell transplantation showed similar loss of BSH and the associated reduction in unconjugated and microbe-derived bile acids. In addition, the FXR antagonist ursodeoxycholic acid reduced the proliferation of human T cells and was associated with a lower risk of GVHD-related mortality in patients. We propose that dysbiosis and loss of microbe-derived bile acids during inflammation may be an important mechanism to amplify T cell-mediated diseases.


Subject(s)
Graft vs Host Disease , T-Lymphocytes , Humans , Intestines , Inflammation , Bile Acids and Salts
11.
Cell Host Microbe ; 31(5): 811-826.e6, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37119822

ABSTRACT

Gastrointestinal infection changes microbiome composition and gene expression. In this study, we demonstrate that enteric infection also promotes rapid genetic adaptation in a gut commensal. Measurements of Bacteroides thetaiotaomicron population dynamics within gnotobiotic mice reveal that these populations are relatively stable in the absence of infection, and the introduction of the enteropathogen Citrobacter rodentium reproducibly promotes rapid selection for a single-nucleotide variant with increased fitness. This mutation promotes resistance to oxidative stress by altering the sequence of a protein, IctA, that is essential for fitness during infection. We identified commensals from multiple phyla that attenuate the selection of this variant during infection. These species increase the levels of vitamin B6 in the gut lumen. Direct administration of this vitamin is sufficient to significantly reduce variant expansion in infected mice. Our work demonstrates that a self-limited enteric infection can leave a stable mark on resident commensal populations that increase fitness during infection.


Subject(s)
Bacteroides thetaiotaomicron , Microbiota , Animals , Mice , Bacteria , Symbiosis
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(1): 193-205, 2019 01.
Article in English | MEDLINE | ID: mdl-30327125

ABSTRACT

Pyridoxal 5'-phosphate (PLP) is an essential cofactor in the catalysis of ~140 different enzymatic reactions. A pharmacological elevation of cellular PLP concentrations is of interest in neuropsychiatric diseases, but whole-body consequences of higher intracellular PLP levels are unknown. To address this question, we have generated mice allowing a conditional ablation of the PLP phosphatase PDXP. Ubiquitous PDXP deletion increased PLP levels in brain, skeletal muscle and red blood cells up to 3-fold compared to control mice, demonstrating that PDXP acts as a major regulator of cellular PLP concentrations in vivo. Neurotransmitter analysis revealed that the concentrations of dopamine, serotonin, epinephrine and glutamate were unchanged in the brains of PDXP knockout mice. However, the levels of γ-aminobutyric acid (GABA) increased by ~20%, demonstrating that elevated PLP levels can drive additional GABA production. Behavioral phenotyping of PDXP knockout mice revealed improved spatial learning and memory, and a mild anxiety-like behavior. Consistent with elevated GABA levels in the brain, PDXP loss in neural cells decreased performance in motor tests, whereas PDXP-deficiency in skeletal muscle increased grip strength. Our findings suggest that PDXP is involved in the fine-tuning of GABA biosynthesis. Pharmacological inhibition of PDXP might correct the excitatory/inhibitory imbalance in some neuropsychiatric diseases.


Subject(s)
Anxiety/metabolism , Brain/metabolism , Cognition/physiology , Muscle, Skeletal/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Pyridoxal Phosphate/metabolism , Animals , Behavior, Animal , Dopamine/metabolism , Epinephrine/metabolism , Erythrocytes/metabolism , Glutamic Acid/metabolism , Male , Memory , Mice , Mice, Knockout , Models, Animal , Neurotransmitter Agents , Phosphoprotein Phosphatases , Psychomotor Performance , Serotonin/metabolism , Spatial Learning , Vitamin B 6/metabolism , gamma-Aminobutyric Acid/metabolism
13.
Biochim Biophys Acta Gen Subj ; 1863(6): 1088-1097, 2019 06.
Article in English | MEDLINE | ID: mdl-30928491

ABSTRACT

BACKGROUND: Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6. Mammals cannot synthesize vitamin B6, so they rely on dietary uptake of the different B6 forms, and via the B6 salvage pathway they interconvert them into PLP. Humans possess three enzymes in this pathway: pyridoxal kinase, pyridox(am)ine phosphate oxidase and pyridoxal phosphatase. Besides these, a fourth enzyme has been described in plants and yeast but not in humans: pyridoxal reductase. METHODS: We analysed B6 vitamers in remnant CSF samples of PLP-treated patients and four mammalian cell lines (HepG2, Caco2, HEK293 and Neuro-2a) supplemented with PL as the sole source of vitamin B6. RESULTS: Strong accumulation of pyridoxine (PN) in CSF of PLP-treated patients was observed, suggesting the existence of a PN-forming enzyme. Our in vitro studies show that all cell lines reduce PL to PN in a time- and dose-dependent manner. We compared the amino acid sequences of known PL reductases to human sequences and found high homology for members of the voltage-gated potassium channel beta subunits and the human aldose reductases. Pharmacological inhibition and knockout of these proteins show that none of the candidates is solely responsible for PL reduction to PN. CONCLUSIONS: We show evidence for the presence of PL reductase activity in humans. Further studies are needed to identify the responsible protein. GENERAL SIGNIFICANCE: This study expands the number of enzymes with a role in B6 salvage pathway. We hypothesize a protective role of PL reductase(s) by limiting the intracellular amount of free PL and PLP.


Subject(s)
Alcohol Oxidoreductases/metabolism , Vitamin B 6 , Caco-2 Cells , HEK293 Cells , Hep G2 Cells , Humans , Pyridoxine/metabolism , Vitamin B 6/pharmacokinetics , Vitamin B 6/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL