Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Med ; 124: 104485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059251

ABSTRACT

PURPOSE: The Monte Carlo (MC) method, the gold standard method for radiotherapy dose calculations, is underused in clinical research applications mainly due to computational speed limitations. Another reason is the time-consuming and error prone conversion of treatment plan specifications into MC parameters. To address this issue, we developed an interface tool that creates a set of TOPAS parameter control files (PCF) from information exported from a clinical treatment planning system (TPS) for plans delivered by the TrueBeam radiotherapy system. METHODS: The interface allows the user to input DICOM-RT files, exported from a TPS and containing the plan parameters, and choose different multileaf-collimator models, variance reduction technique parameters, scoring quantities and simulation output formats. Radiation sources are precomputed phase space files obtained from Varian. Based on this information, ready-to-run TOPAS PCF that incorporate the position and angular rotation of the TrueBeam dynamic collimation devices, gantry, couch, and patient according to treatment plan specifications are created. RESULTS: Dose distributions computed using these PCF were compared against predictions from commercial TPS for different clinical treatment plans and techniques (3D-CRT, IMRT step-and-shoot and VMAT) to evaluate the performance of the interface. The agreement between dose distributions from TOPAS and TPS (>98 % pass ratio in the gamma test) confirmed the correct parametrization of treatment plan specifications into MC PCF. CONCLUSIONS: This interface tool is expected to widen the use of MC methods in the clinical medical physics field by facilitating the straightforward transfer of treatment plan parameters from commercial TPS into MC PCF.


Subject(s)
Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Humans , User-Computer Interface , Software
2.
Phys Med Biol ; 69(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38964312

ABSTRACT

Objective.To present a new set of lithium-ion cross-sections for (i) ionization and excitation processes down to 700 eV, and (ii) charge-exchange processes down to 1 keV u-1. To evaluate the impact of the use of these cross-sections on micro a nano dosimetric quantities in the context of boron neutron capture (BNC) applications/techniques.Approach.The Classical Trajectory Monte Carlo method was used to calculate Li ion charge-exchange cross sections in the energy range of 1 keV u-1to 10 MeV u-1. Partial Li ion charge states ionization and excitation cross-sections were calculated using a detailed charge screening factor. The cross-sections were implemented in Geant4-DNA v10.07 and simulations and verified using TOPAS-nBio by calculating stopping power and continuous slowing down approximation (CSDA) range against data from ICRU and SRIM. Further microdosimetric and nanodosimetric calculations were performed to quantify differences against other simulation approaches for low energy Li ions. These calculations were: lineal energy spectra (yf(y) andyd(y)), frequency mean lineal energyyF-, dose mean lineal energyyD-and ionization cluster size distribution analysis. Microdosimetric calculations were compared against a previous MC study that neglected charge-exchange and excitation processes. Nanodosimetric results were compared against pure ionization scaled cross-sections calculations.Main results.Calculated stopping power differences between ICRU and Geant4-DNA decreased from 33.78% to 6.9%. The CSDA range difference decreased from 621% to 34% when compared against SRIM calculations. Geant4-DNA/TOPAS calculated dose mean lineal energy differed by 128% from the previous Monte Carlo. Ionization cluster size frequency distributions for Li ions differed by 76%-344.11% for 21 keV and 2 MeV respectively. With a decrease in theN1within 9% at 10 keV and agreeing after the 100 keV. With the new set of cross-sections being able to better simulate low energy behaviors of Li ions.Significance.This work shows an increase in detail gained from the use of a more complete set of low energy cross-sections which include charge exchange processes. Significant differences to previous simulation results were found at the microdosimetric and nanodosimetric scales that suggest that Li ions cause less ionizations per path length traveled but with more energy deposits. Microdosimetry results suggest that the BNC's contribution to cellular death may be mainly due to alpha particle production when boron-based drugs are distributed in the cellular membrane and beyond and by Li when it is at the cell cytoplasm regions.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Monte Carlo Method , Radiometry , Lithium/chemistry , Boron Neutron Capture Therapy/methods , Nanotechnology , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL