Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 587(7834): 477-482, 2020 11.
Article in English | MEDLINE | ID: mdl-33116311

ABSTRACT

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Subject(s)
Clone Cells/pathology , DNA Mutational Analysis , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Single-Cell Analysis , Cell Separation , Clone Cells/metabolism , Humans , Immunophenotyping
2.
Blood ; 142(22): 1859-1870, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37729609

ABSTRACT

Polycythemia vera (PV) belongs to the BCR-ABL1-negative myeloproliferative neoplasms and is characterized by activating mutations in JAK2 and clinically presents with erythrocytosis, variable degrees of systemic and vasomotor symptoms, and an increased risk of both thromboembolic events and progression to myelofibrosis and acute myeloid leukemia (AML). Treatment selection is based on a patient's age and a history of thrombosis in patients with low-risk PV treated with therapeutic phlebotomy and aspirin alone, whereas cytoreductive therapy with either hydroxyurea or interferon alfa (IFN-α) is added for high-risk disease. However, other disease features such as significant disease-related symptoms and splenomegaly, concurrent thrombocytosis and leukocytosis, or intolerance of phlebotomy can constitute an indication for cytoreductive therapy in patients with otherwise low-risk disease. Additionally, recent studies demonstrating the safety and efficacy (ie, reduction in phlebotomy requirements and molecular responses) of ropegylated IFN-α2b support its use for patients with low-risk PV. Additionally, emerging data suggest that early treatment is associated with higher rates of molecular responses, which might eventually enable time-limited therapy. Nonetheless, longer follow-up is needed to assess whether molecular responses associate with clinically meaningful outcome measures such as thrombosis and progression to myelofibrosis or AML. In this article, we provide an overview of the current and evolving treatment landscape of PV and outline our vision for a patient-centered, phlebotomy-free, treatment approach using time-limited, disease-modifying treatment modalities early in the disease course, which could ultimately affect the natural history of the disease.


Subject(s)
Leukemia, Myeloid, Acute , Polycythemia Vera , Primary Myelofibrosis , Thrombocytosis , Thrombosis , Humans , Polycythemia Vera/complications , Polycythemia Vera/genetics , Polycythemia Vera/therapy , Primary Myelofibrosis/drug therapy , Thrombocytosis/therapy , Hydroxyurea/therapeutic use , Thrombosis/therapy , Thrombosis/chemically induced , Interferon-alpha/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Janus Kinase 2/genetics
3.
Blood ; 141(20): 2508-2519, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36800567

ABSTRACT

Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Primary Myelofibrosis , Humans , Mice , Animals , Primary Myelofibrosis/pathology , Myeloproliferative Disorders/genetics , Signal Transduction , Neoplasms/complications , Cytokines/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
4.
Blood ; 141(6): 567-578, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36399715

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with historically poor outcomes and no worldwide consensus treatment approach. Unique among most hematologic malignancies for its frequent cutaneous involvement, BPDCN can also invade other extramedullary compartments, including the central nervous system. Generally affecting older adults, many patients are unfit to receive intensive chemotherapy, and although hematopoietic stem cell transplantation is preferred for younger, fit individuals, not all are eligible. One recent therapeutic breakthrough is that all BPDCNs express CD123 (IL3Rα) and that this accessible surface marker can be pharmacologically targeted. The first-in-class agent for BPDCN, tagraxofusp, which targets CD123, was approved in December 2018 in the United States for patients with BPDCN aged ≥2 years. Despite favorable response rates in the frontline setting, many patients still relapse in the setting of monotherapy, and outcomes in patients with relapsed/refractory BPDCN remain dismal. Therefore, novel approaches targeting both CD123 and other targets are actively being investigated. To begin to formally address the state of the field, we formed a new collaborative initiative, the North American BPDCN Consortium (NABC). This group of experts, which includes a multidisciplinary panel of hematologists/oncologists, hematopoietic stem cell transplant physicians, pathologists, dermatologists, and pediatric oncologists, was tasked with defining the current standard of care in the field and identifying the most important research questions and future directions in BPDCN. The position findings of the NABC's inaugural meetings are presented herein.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Skin Neoplasms , Child , Humans , Aged , Standard of Care , Interleukin-3 Receptor alpha Subunit , Dendritic Cells/pathology , Neoplasm Recurrence, Local/pathology , Myeloproliferative Disorders/pathology , Hematologic Neoplasms/pathology , Skin Neoplasms/pathology , Acute Disease , North America
5.
Nature ; 567(7749): 521-524, 2019 03.
Article in English | MEDLINE | ID: mdl-30867592

ABSTRACT

Histiocytic neoplasms are a heterogeneous group of clonal haematopoietic disorders that are marked by diverse mutations in the mitogen-activated protein kinase (MAPK) pathway1,2. For the 50% of patients with histiocytosis who have BRAFV600 mutations3-5, RAF inhibition is highly efficacious and has markedly altered the natural history of the disease6,7. However, no standard therapy exists for the remaining 50% of patients who lack BRAFV600 mutations. Although ERK dependence has been hypothesized to be a consistent feature across histiocytic neoplasms, this remains clinically unproven and many of the kinase mutations that are found in patients who lack BRAFV600 mutations have not previously been biologically characterized. Here we show ERK dependency in histiocytoses through a proof-of-concept clinical trial of cobimetinib, an oral inhibitor of MEK1 and MEK2, in patients with histiocytoses. Patients were enrolled regardless of their tumour genotype. In parallel, MAPK alterations that were identified in treated patients were characterized for their ability to activate ERK. In the 18 patients that we treated, the overall response rate was 89% (90% confidence interval of 73-100). Responses were durable, with no acquired resistance to date. At one year, 100% of responses were ongoing and 94% of patients remained progression-free. Cobimetinib treatment was efficacious regardless of genotype, and responses were observed in patients with ARAF, BRAF, RAF1, NRAS, KRAS, MEK1 (also known as MAP2K1) and MEK2 (also known as MAP2K2) mutations. Consistent with the observed responses, the characterization of the mutations that we identified in these patients confirmed that the MAPK-pathway mutations were activating. Collectively, these data demonstrate that histiocytic neoplasms are characterized by a notable dependence on MAPK signalling-and that they are consequently responsive to MEK inhibition. These results extend the benefits of molecularly targeted therapy to the entire spectrum of patients with histiocytosis.


Subject(s)
Azetidines/therapeutic use , Histiocytic Disorders, Malignant/drug therapy , Histiocytic Disorders, Malignant/enzymology , Histiocytosis/drug therapy , Histiocytosis/enzymology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Piperidines/therapeutic use , Azetidines/pharmacology , Histiocytic Disorders, Malignant/genetics , Histiocytic Disorders, Malignant/pathology , Histiocytosis/genetics , Histiocytosis/pathology , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Signaling System/drug effects , Mutation , Piperidines/pharmacology , Progression-Free Survival , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/genetics
6.
Br J Haematol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613141

ABSTRACT

Histiocytic neoplasms are diverse clonal haematopoietic disorders, and clinical disease is mediated by tumorous infiltration as well as uncontrolled systemic inflammation. Individual subtypes include Langerhans cell histiocytosis (LCH), Rosai-Dorfman-Destombes disease (RDD) and Erdheim-Chester disease (ECD), and these have been characterized with respect to clinical phenotypes, driver mutations and treatment paradigms. Less is known about patients with mixed histiocytic neoplasms (MXH), that is two or more coexisting disorders. This international collaboration examined patients with biopsy-proven MXH with respect to component disease subtypes, oncogenic driver mutations and responses to conventional (chemotherapeutic or immunosuppressive) versus targeted (BRAF or MEK inhibitor) therapies. Twenty-seven patients were studied with ECD/LCH (19/27), ECD/RDD (6/27), RDD/LCH (1/27) and ECD/RDD/LCH (1/27). Mutations previously undescribed in MXH were identified, including KRAS, MAP2K2, MAPK3, non-V600-BRAF, RAF1 and a BICD2-BRAF fusion. A repeated-measure generalized estimating equation demonstrated that targeted treatment was statistically significantly (1) more likely to result in a complete response (CR), partial response (PR) or stable disease (SD) (odds ratio [OR]: 17.34, 95% CI: 2.19-137.00, p = 0.007), and (2) less likely to result in progression (OR: 0.08, 95% CI: 0.03-0.23, p < 0.0001). Histiocytic neoplasms represent an entity with underappreciated clinical and molecular diversity, poor responsiveness to conventional therapy and exquisite sensitivity to targeted therapy.

7.
Blood ; 140(22): 2371-2384, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36054916

ABSTRACT

We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.


Subject(s)
Erythropoietin , Myeloproliferative Disorders , Neoplasms , Polycythemia , Humans , Erythropoiesis/physiology , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Polycythemia/metabolism , Erythropoietin/metabolism , Myeloproliferative Disorders/metabolism , Erythroid Precursor Cells/metabolism , Neoplasms/metabolism , Receptor, IGF Type 1/metabolism
8.
Blood ; 139(18): 2797-2815, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35286385

ABSTRACT

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.


Subject(s)
GATA2 Transcription Factor , HMGA1a Protein , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Cell Proliferation , Chromatin/genetics , GATA2 Transcription Factor/genetics , Gene Regulatory Networks , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Myeloid, Acute/genetics , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Primary Myelofibrosis/genetics
9.
Blood ; 139(25): 3630-3646, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35421216

ABSTRACT

Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , Tumor Suppressor Protein p53 , Animals , Bone Morphogenetic Protein 2/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocyte-Erythroid Progenitor Cells/metabolism , Megakaryocytes/metabolism , Mice , Mutation , Myeloproliferative Disorders/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Blood ; 140(12): 1408-1418, 2022 09 22.
Article in English | MEDLINE | ID: mdl-35667047

ABSTRACT

To determine the survival benefit of allogeneic hematopoietic cell transplantation (allo-HCT) in chronic myelomonocytic leukemias (CMML), we assembled a retrospective cohort of CMML patients 18-70 years old diagnosed between 2000 and 2014 from an international CMML dataset (n = 730) and the EBMT registry (n = 384). The prognostic impact of allo-HCT was analyzed through univariable and multivariable time-dependent models and with a multistate model, accounting for age, sex, CMML prognostic scoring system (low or intermediate-1 grouped as lower-risk, intermediate-2 or high as higher-risk) at diagnosis, and AML transformation. In univariable analysis, lower-risk CMMLs had a 5-year overall survival (OS) of 20% with allo-HCT vs 42% without allo-HCT (P < .001). In higher-risk patients, 5-year OS was 27% with allo-HCT vs 15% without allo-HCT (P = .13). With multistate models, performing allo-HCT before AML transformation reduced OS in patients with lower-risk CMML, and a survival benefit was predicted for men with higher-risk CMML. In a multivariable analysis of lower-risk patients, performing allo-HCT before transformation to AML significantly increased the risk of death within 2 years of transplantation (hazard ratio [HR], 3.19; P < .001), with no significant change in long-term survival beyond this time point (HR, 0.98; P = .92). In higher-risk patients, allo-HCT significantly increased the risk of death in the first 2 years after transplant (HR 1.46; P = .01) but not beyond (HR, 0.60; P = .09). Performing allo-HCT before AML transformation decreases life expectancy in lower-risk patients but may be considered in higher-risk patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myelomonocytic, Chronic , Leukemia, Myelomonocytic, Juvenile , Adolescent , Adult , Aged , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/therapy , Male , Middle Aged , Retrospective Studies , Transplantation, Homologous , Young Adult
11.
Blood ; 139(19): 2931-2941, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35007321

ABSTRACT

The goal of therapy for patients with essential thrombocythemia (ET) and polycythemia vera (PV) is to reduce thrombotic events by normalizing blood counts. Hydroxyurea (HU) and interferon-α (IFN-α) are the most frequently used cytoreductive options for patients with ET and PV at high risk for vascular complications. Myeloproliferative Disorders Research Consortium 112 was an investigator-initiated, phase 3 trial comparing HU to pegylated IFN-α (PEG) in treatment-naïve, high-risk patients with ET/PV. The primary endpoint was complete response (CR) rate at 12 months. A total of 168 patients were treated for a median of 81.0 weeks. CR for HU was 37% and 35% for PEG (P = .80) at 12 months. At 24 to 36 months, CR was 20% to 17% for HU and 29% to 33% for PEG. PEG led to a greater reduction in JAK2V617F at 24 months, but histopathologic responses were more frequent with HU. Thrombotic events and disease progression were infrequent in both arms, whereas grade 3/4 adverse events were more frequent with PEG (46% vs 28%). At 12 months of treatment, there was no significant difference in CR rates between HU and PEG. This study indicates that PEG and HU are both effective treatments for PV and ET. With longer treatment, PEG was more effective in normalizing blood counts and reducing driver mutation burden, whereas HU produced more histopathologic responses. Despite these differences, both agents did not differ in limiting thrombotic events and disease progression in high-risk patients with ET/PV. This trial was registered at www.clinicaltrials.gov as #NCT01259856.


Subject(s)
Polycythemia Vera , Thrombocythemia, Essential , Thrombosis , Disease Progression , Humans , Hydroxyurea/adverse effects , Interferon-alpha/adverse effects , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/genetics , Thrombosis/chemically induced , Thrombosis/prevention & control
12.
Haematologica ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450530

ABSTRACT

Comprehensive genomic sequencing is becoming a critical component in the assessment of hematologic malignancies, with broad implications for patient management. In this context, unequivocally discriminating somatic from germline events is challenging but greatly facilitated by matched analysis of tumor:normal pairs. In contrast to solid tumors, conventional sources of normal control (peripheral blood, buccal swabs, saliva) could be highly involved by the neoplastic process, rendering them unsuitable. In this work we describe our real-world experience using cell free DNA (cfDNA) isolated from nail clippings as an alternate source of normal control, through the dedicated review of 2,610 tumor:nail pairs comprehensively sequenced by MSK-IMPACT-heme. Overall, we find nail cfDNA is a robust source of germline control for paired genomic studies. In a subset of patients, nail DNA may have tumor DNA contamination, reflecting unique attributes of the hematologic disease and transplant history. Contamination is generally low level, but significantly more common among patients with myeloid neoplasms (20.5%; 304/1482) compared to lymphoid diseases (5.4%; 61/1128) and particularly enriched in myeloproliferative neoplasms with marked myelofibrosis. When identified in patients with lymphoid and plasma-cell neoplasms, mutations commonly reflected a myeloid profile and correlated with a concurrent/evolving clonal myeloid neoplasm. For nails collected after allogeneic stem-cell transplantation, donor DNA was identified in 22% (11/50). In this cohort, an association with recent history of graft-vs-host disease was identified. These findings should be considered as a potential limitation for the use of nail as normal control but could also provide important diagnostic information regarding the disease process.

13.
Br J Haematol ; 203(3): 389-394, 2023 11.
Article in English | MEDLINE | ID: mdl-37400251

ABSTRACT

Little is known about outcomes following interruption of targeted therapy in adult patients with histiocytic neoplasms. This is an IRB-approved study of patients with histiocytic neoplasms whose BRAF and MEK inhibitors were interrupted after achieving complete or partial response by 18-fluorodeoxyglucose positron emission tomography (FDG-PET). 17/22 (77%) of patients experienced disease relapse following treatment interruption. Achieving a complete response prior to interruption, having a mutation other than BRAFV600E, and receiving MEK inhibition only were each associated with a statistically significant improvement in relapse-free survival. Relapse is common following treatment interruption however some patients may be suitable for limited-duration treatment.


Subject(s)
Neoplasms , Adult , Humans , Positron-Emission Tomography , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases , Recurrence , Fluorodeoxyglucose F18 , Proto-Oncogene Proteins B-raf/genetics
14.
Blood ; 137(10): 1377-1391, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32871587

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are the principal natural type I interferon-producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN), and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia. The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here, we characterize patients with AML with pDC expansion (pDC-AML), which we observe in ∼5% of AML cases. pDC-AMLs often possess cross-lineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without pDC expansion and BPDCN. We demonstrate that pDCs are clonally related to, as well as originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1-mutated AML upregulate a pDC transcriptional program, poising the cells toward pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Dendritic Cells/pathology , Leukemia, Myeloid, Acute/genetics , Adult , Aged , Blast Crisis/genetics , Blast Crisis/pathology , Dendritic Cells/metabolism , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation
15.
Am J Hematol ; 98(12): 1869-1876, 2023 12.
Article in English | MEDLINE | ID: mdl-37688521

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for patients with acute leukemia. Despite this, studies have shown that only a minority of patients ultimately proceed to allo-HCT. The primary objective of this prospective, observational study was to identify the rate of allo-HCT in patients for whom it was recommended, and reasons why patients deemed appropriate and eligible for HCT did not subsequently undergo transplant. Between April 2016 and April 2021, adult patients with newly diagnosed or relapsed/refractory acute leukemia were enrolled at the time of induction/reinduction therapy. Initial transplantation workup and allo-HCT recommendations were made during the early phase of induction/reinduction. Of the 307 enrolled patients, allo-HCT was recommended to 85% (n = 259), of whom 66% (n = 170) underwent transplant. Donor sources comprised 54% human leukocyte antigen (HLA)-matched unrelated donors, 20% HLA-matched sibling donors and HLA-mismatched graft sources with 15% umbilical cord blood units, 8% HLA-mismatched unrelated donors, and 4% HLA-haploidentical donors. The most common reason for transplant disqualification in the 89 patients in whom it was initially recommended was persistent/relapsed disease (70%), followed by early patient death (10%). In this prospective study, we report a high allo-HCT rate, which may be due to early transplant referral and workup. The main allo-HCT barrier was disease control, followed by early patient death. With the increasing availability of HLA-mismatched graft sources, the lack of donor availability was not a transplant barrier. Further development of novel transplant strategies for patients not achieving remission and improvements in induction regimens could result in increased allo-HCT utilization.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adult , Humans , Prospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Unrelated Donors , Transplantation, Homologous , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/etiology , Acute Disease , HLA Antigens , Graft vs Host Disease/etiology , Retrospective Studies
16.
Blood ; 136(1): 61-70, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32430500

ABSTRACT

Secondary acute myeloid leukemias (AMLs) evolving from an antecedent myeloproliferative neoplasm (MPN) are characterized by a unique set of cytogenetic and molecular features distinct from de novo AML. Given the high frequency of poor-risk cytogenetic and molecular features, malignant clones are frequently insensitive to traditional AML chemotherapeutic agents. Allogeneic stem cell transplant, the only treatment modality shown to have any beneficial long-term outcome, is often not possible given the advanced age of patients at time of diagnosis and frequent presence of competing comorbidities. Even in this setting, relapse rates remain high. As a result, outcomes are generally poor and there remains a significant unmet need for novel therapeutic strategies. Although advances in cancer genomics have dramatically enhanced our understanding of the molecular events governing clonal evolution in MPNs, the cell-intrinsic and -extrinsic mechanisms driving leukemic transformation at this level remain poorly understood. Here, we review known risk factors for the development of leukemic transformation in MPNs, recent progress made in our understanding of the molecular features associated with leukemic transformation, current treatment strategies, and emerging therapeutic options for this high-risk myeloid malignancy.


Subject(s)
Leukemia, Myeloid, Acute/etiology , Myeloproliferative Disorders/pathology , Abnormal Karyotype , Allografts , Antineoplastic Agents/therapeutic use , Cell Transformation, Neoplastic , Chromosome Aberrations , Clonal Evolution , Combined Modality Therapy , Comorbidity , Disease Progression , Drug Resistance, Neoplasm , Drugs, Investigational/therapeutic use , Genes, Neoplasm , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Models, Biological , Mutation , Myeloproliferative Disorders/genetics , Neoplasm Proteins/genetics , Recurrence , Risk Factors , Single-Cell Analysis , Therapies, Investigational
17.
Haematologica ; 107(7): 1599-1607, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34551507

ABSTRACT

Thrombocytopenia is common in patients with myelofibrosis (MF) and is a well-established adverse prognostic factor. Both of the approved Janus kinase (JAK) inhibitors, ruxolitinib and fedratinib, can worsen thrombocytopenia and have not been evaluated in patients with severe thrombocytopenia (platelet counts <50×109/L). Pacritinib, a novel JAK2/interleukin-1 receptor-associated kinase 1 inhibitor, has been studied in two phase III trials (PERSIST-1 and PERSIST- 2), both of which enrolled patients with MF and severe thrombocytopenia. In order to better characterize treatment outcomes for this population with advanced disease, we present a retrospective analysis of efficacy and safety data in the 189 patients with severe thrombocytopenia treated in the PERSIST studies. The proportion of patients in the pacritinib group meeting efficacy endpoints was greater than in the BAT group for ≥35% spleen volume reduction (23% vs. 2%, P=0.0007), ≥50% modified Total Symptom Score reduction (25% vs. 8%, P=0.044), and self-reported symptom benefit ("much" or "very much" improved; 25% vs. 8%, P=0.016) at the primary analysis time point (week 24). The adverse event profile of pacritinib was manageable, and dose modification was rarely required. There was no excess in bleeding or death in pacritinib-treated patients. These results indicate that pacritinib is a promising treatment for patients with MF who lack safe and effective therapeutic options due to severe thrombocytopenia.


Subject(s)
Anemia , Primary Myelofibrosis , Thrombocytopenia , Anemia/chemically induced , Bridged-Ring Compounds , Humans , Janus Kinase 2 , Nitriles/therapeutic use , Primary Myelofibrosis/complications , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/drug therapy , Protein Kinase Inhibitors/adverse effects , Pyrimidines , Retrospective Studies , Thrombocytopenia/chemically induced , Thrombocytopenia/etiology
18.
Future Oncol ; 18(27): 2987-2997, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35950489

ABSTRACT

Myelofibrosis (MF) is a clonal myeloproliferative neoplasm, typically associated with disease-related symptoms, splenomegaly, cytopenias and bone marrow fibrosis. Patients experience a significant symptom burden and a reduced life expectancy. Patients with MF receive ruxolitinib as the current standard of care, but the depth and durability of responses and the percentage of patients achieving clinical outcome measures are limited; thus, a significant unmet medical need exists. Pelabresib is an investigational small-molecule bromodomain and extraterminal domain inhibitor currently in clinical development for MF. The aim of this article is to describe the design of the ongoing, global, phase III, double-blind, placebo-controlled MANIFEST-2 study evaluating the efficacy and safety of pelabresib and ruxolitinib versus placebo and ruxolitinib in patients with JAKi treatment-naive MF. Clinical Trial Registration: NCT04603495 (ClinicalTrials.gov).


Myelofibrosis (MF) is a rare type of blood cancer that interferes with the process of blood cell production by the bone marrow. In patients with MF, the bone marrow becomes overactive, leading to scarring and subsequently a lack of healthy blood cells being produced. The main symptoms of MF include anemia, fatigue, weakness and pain or discomfort in the abdomen. MF is associated with a shortened life expectancy. The current go-to treatment for MF is ruxolitinib. However, ruxolitinib has shown limited efficacy in improving clinical symptoms long term; so, new safe and effective treatments are needed. Pelabresib is a novel drug currently in clinical development for treating MF. The aim of this article is to describe the design of the ongoing, global phase III MANIFEST-2 study. MANIFEST-2 is evaluating the efficacy and safety of pelabresib and ruxolitinib versus placebo and ruxolitinib in patients with MF.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Primary Myelofibrosis , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Clinical Trials, Phase III as Topic , Humans , Janus Kinase Inhibitors/therapeutic use , Nitriles/therapeutic use , Primary Myelofibrosis/drug therapy , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Randomized Controlled Trials as Topic , Treatment Outcome
19.
Blood ; 134(6): 525-533, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31167802

ABSTRACT

A limited number of drugs are available to treat patients with polycythemia vera (PV) and essential thrombocythemia (ET). We attempted to identify alternative agents that may target abnormalities within malignant hematopoietic stem (HSCs) and progenitor cells (HPCs). Previously, MDM2 protein levels were shown to be upregulated in PV/ET CD34+ cells, and exposure to a nutlin, an MDM2 antagonist, induced activation of the TP53 pathway and selective depletion of PV HPCs/HSCs. This anticlonal activity was mediated by upregulation of p53 and potentiated by the addition of interferon-α2a (IFN-α2a). Therefore, we performed an investigator-initiated phase 1 trial of the oral MDM2 antagonist idasanutlin (RG7388; Roche) in patients with high-risk PV/ET for whom at least 1 prior therapy had failed. Patients not attaining at least a partial response by European LeukemiaNet criteria after 6 cycles were then allowed to receive combination therapy with low-dose pegylated IFN-α2a. Thirteen patients with JAK2 V617F+ PV/ET were enrolled, and 12 (PV, n = 11; ET, n = 1) were treated with idasanutlin at 100 and 150 mg daily, respectively, for 5 consecutive days of a 28-day cycle. Idasanutlin was well tolerated; no dose-limiting toxicity was observed, but low-grade gastrointestinal toxicity was common. Overall response rate after 6 cycles was 58% (7 of 12) with idasanutlin monotherapy and 50% (2 of 4) with combination therapy. Median duration of response was 16.8 months (range, 3.5-26.7). Hematologic, symptomatic, pathologic, and molecular responses were observed. These data indicate that idasanutlin is a promising novel agent for PV; it is currently being evaluated in a global phase 2 trial. This trial was registered at www.clinicaltrials.gov as #NCT02407080.


Subject(s)
Antineoplastic Agents/administration & dosage , Polycythemia Vera/drug therapy , Pyrrolidines/administration & dosage , para-Aminobenzoates/administration & dosage , Administration, Oral , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Biomarkers , Female , Humans , Male , Middle Aged , Molecular Targeted Therapy , Mutation , Polycythemia Vera/diagnosis , Polycythemia Vera/etiology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines/adverse effects , Treatment Outcome , para-Aminobenzoates/adverse effects
20.
Blood ; 134(8): 678-687, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31243042

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an uncommon hematologic malignancy with poor outcomes. Existing data on the clinical behavior of BPDCN are limited because reported outcomes are from small retrospective series, and standardized treatment guidelines are lacking. The interleukin-3 cytotoxin conjugate tagraxofusp was recently tested in phase 1/2 trials that led to US Food and Drug Administration approval, the first ever for BPDCN. However, because there was no matched internal comparator in this or any clinical study to date, results of BPDCN trials testing new drugs are difficult to compare with alternative therapies. We therefore sought to define the clinical characteristics and outcomes of a group of patients with BPDCN treated at 3 US cancer centers in the modern era but before tagraxofusp was available. In 59 studied patients with BPDCN, the median overall survival from diagnosis was 24 months, and outcomes were similar in patients with "skin only" or with systemic disease at presentation. Intensive first-line therapy and "lymphoid-type" chemotherapy regimens were associated with better outcomes. Only 55% of patients received intensive chemotherapy, and 42% of patients underwent stem cell transplantation. Clinical characteristics at diagnosis associated with poorer outcomes included age >60 years, abnormal karyotype, and terminal deoxynucleotidyltransferase (TdT) negativity in the BPDCN cells. We also identified disease responses to pralatrexate and enasidenib in some patients. This study highlights poor outcomes for patients with BPDCN in the modern era and the need for new treatments. Outcomes from ongoing clinical trials for BPDCN can be evaluated relative to this contemporary cohort.


Subject(s)
Dendritic Cells/pathology , Hematologic Neoplasms/therapy , Skin Neoplasms/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benchmarking , Child , Cohort Studies , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/diagnosis , Hematopoietic Stem Cell Transplantation , Humans , Male , Middle Aged , Multicenter Studies as Topic , Skin Neoplasms/complications , Skin Neoplasms/diagnosis , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL