Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mod Pathol ; 29(12): 1532-1540, 2016 12.
Article in English | MEDLINE | ID: mdl-27562493

ABSTRACT

Recurrent mutations in the myogenic transcription factor MYOD1 and PIK3CA were initially described in a subset of embryonal rhabdomyosarcomas. Recently, two independent studies demonstrated presence of MYODI (L122R) mutations as the basis to re-classify a spindle cell rhabdomyosarcoma, along with a sclerosing rhabdomyosarcoma, distinct from an embryonal rhabdomyosarcoma. We analyzed a much larger cohort of 49 primary rhabdomyosarcoma tumor samples of various subtypes, collected over a period of 9 years, for the presence of MYOD1 (L122R), PIK3CA (H1047), and PIK3CA (E542/E545) mutations, along with immunohistochemical analysis of desmin, myogenin, and MYOD1. Although activating PIK3CA mutations were absent across the sample set analyzed, we report 20% MYOD1 (L122R) mutation in rhabdomyosarcomas, found exclusively in 10 of 21 spindle cell and sclerosing rhabdomyosarcomas, occurring mostly in the head and neck region along with extremity sites (64%), than the paratesticular and intra-abdominal sites. Furthermore, while all 10 MYOD1 mutant spindle cell and sclerosing rhabdomyosarcoma samples showed diffuse and strong MYOD1 immunoexpression, 7 of 31 samples of rhabdomyosarcoma with wild-type MYOD1 were negative for MYOD1 expression. Clinically, a striking correlation was found between MYOD1 mutation and the clinical outcomes available for 15 of 21 cases: 5 of 7 patients with spindle cell and sclerosing rhabdomyosarcomas, harboring MYOD1 mutation, were alive-with-disease and 2 of 8 patients with spindle cell and sclerosing rhabdomyosarcomas, with mutant MYOD1, were free-of-disease. Taken together, we present the first report of MYOD1 (L122R) mutation in the largest cohort of 49 rhabdomyosarcomas reported so far, that are associated with a relatively aggressive clinical course. Moreover, consistent with the earlier two studies, this study further reinforces a relationship between spindle cell and the sclerosing rhabdomyosarcoma-now recognized as a single subtype, distinct from an embryonal rhabdomyosarcoma.


Subject(s)
Biomarkers, Tumor/genetics , MyoD Protein/genetics , Rhabdomyosarcoma/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Mutation , Rhabdomyosarcoma/pathology , Young Adult
2.
BMC Genomics ; 16: 936, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26572163

ABSTRACT

BACKGROUND: Several statistical tools have been developed to identify genes mutated at rates significantly higher than background, indicative of positive selection, involving large sample cohort studies. However, studies involving smaller sample sizes are inherently restrictive due to their limited statistical power to identify low frequency genetic variations. RESULTS: We performed an integrated characterization of copy number, mutation and expression analyses of four head and neck cancer cell lines - NT8e, OT9, AW13516 and AW8507 - by applying a filtering strategy to prioritize for genes affected by two or more alterations within or across the cell lines. Besides identifying TP53, PTEN, HRAS and MET as major altered HNSCC hallmark genes, this analysis uncovered 34 novel candidate genes altered. Of these, we find a heterozygous truncating mutation in Nuclear receptor binding protein, NRBP1 pseudokinase gene, identical to as reported in other cancers, is oncogenic when ectopically expressed in NIH-3 T3 cells. Knockdown of NRBP1 in an oral carcinoma cell line bearing NRBP1 mutation inhibit transformation and survival of the cells. CONCLUSIONS: In overall, we present the first comprehensive genomic characterization of four head and neck cancer cell lines established from Indian patients. We also demonstrate the ability of integrated analysis to uncover biologically important genetic variation in studies involving fewer or rare clinical specimens.


Subject(s)
Carcinoma, Squamous Cell/genetics , Genomics/methods , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Cell Survival , DNA, Neoplasm , Gene Dosage , Humans , Karyotype , Mutation , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Receptors, Cytoplasmic and Nuclear/genetics , Sequence Analysis, DNA , Squamous Cell Carcinoma of Head and Neck , Transcriptome , Vesicular Transport Proteins/genetics
3.
Proteins ; 82(7): 1283-300, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24338975

ABSTRACT

Gankyrin, a non-ATPase component of the proteasome and a chaperone of proteasome assembly, is also an oncoprotein. Gankyrin regulates a variety of oncogenic signaling pathways in cancer cells and accelerates degradation of tumor suppressor proteins p53 and Rb. Therefore gankyrin may be a unique hub integrating signaling networks with the degradation pathway. To identify new interactions that may be crucial in consolidating its role as an oncogenic hub, crystal structure of gankyrin-proteasome ATPase complex was used to predict novel interacting partners. EEVD, a four amino acid linear sequence seems a hot spot site at this interface. By searching for EEVD in exposed regions of human proteins in PDB database, we predicted 34 novel interactions. Eight proteins were tested and seven of them were found to interact with gankyrin. Affinity of four interactions is high enough for endogenous detection. Others require gankyrin overexpression in HEK 293 cells or occur endogenously in breast cancer cell line- MDA-MB-435, reflecting lower affinity or presence of a deregulated network. Mutagenesis and peptide inhibition confirm that EEVD is the common hot spot site at these interfaces and therefore a potential polypharmacological drug target. In MDA-MB-231 cells in which the endogenous CLIC1 is silenced, trans-expression of Wt protein (CLIC1_EEVD) and not the hot spot site mutant (CLIC1_AAVA) resulted in significant rescue of the migratory potential. Our approach can be extended to identify novel functionally relevant protein-protein interactions, in expansion of oncogenic networks and in identifying potential therapeutic targets.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Interaction Mapping , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Animals , Cell Line, Tumor , Cell Movement , Chloride Channels/chemistry , Chloride Channels/metabolism , Humans , Mice , Reproducibility of Results , Signal Transduction , Transcription Factors
4.
Swiss Med Wkly ; 150: w20195, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32083704

ABSTRACT

With the emerging advances made in genomics and functional genomics approaches, there is a critical and growing unmet need to integrate plural datasets in order to identify driver genes in cancer. An integrative approach, with the convergence of multiple types of genetic evidence, can limit false positives through a posterior filtering strategy and reduce the need for multiple hypothesis testing to identify true cancer vulnerabilities. We performed a pooled shRNA screen against 906 human genes in the oral cancer cell line AW13516 in triplicate. The genes that were depleted in the screen were integrated with copy number alteration and gene expression data and ranked based on ROAST analysis, using an integrative scoring system, DepRanker, to compute a Rank Impact Score (RIS) for each gene. The RIS-based ranking of candidate driver genes was used to identify the putative oncogenes AURKB and TK1 as essential for oral cancer cell proliferation. We validated the findings, showing that shRNA mediated genetic knockdown of TK1 or pharmacological inhibition of AURKB by AZD-1152 HQPA in AW13516 cells could significantly impede their proliferation. Next we analysed alterations in AURKB and TK1 genes in head and neck cancer and their association with prognosis using data on 528 patients obtained from TCGA. Patients harbouring alterations in AURKB and TK1 genes were associated with poor survival. To summarise, we present DepRanker as a simple yet robust package with no third-party dependencies for the identification of potential driver genes from a pooled shRNA functional genomic screen by integrating results from RNAi screens with gene expression and copy number data. Using DepRanker, we identify AURKB and TK1 as potential therapeutic targets in oral cancer. DepRanker is in the public domain and available for download at http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html.


Subject(s)
Aurora Kinase B/genetics , Gene Drive Technology/methods , Head and Neck Neoplasms/genetics , RNA, Small Interfering/genetics , Thymidine Kinase/genetics , Cell Line , Genomics/methods , Humans , Oncogenes , Software , Survival , Tongue Neoplasms/genetics
5.
F1000Res ; 4: 160, 2015.
Article in English | MEDLINE | ID: mdl-27127615

ABSTRACT

Molecular diagnostics has changed the way lung cancer patients are treated worldwide. Of several different testing methods available, PCR followed by directed sequencing and amplification refractory mutation system (ARMS) are the two most commonly used diagnostic methods worldwide to detect mutations at  KRAS exon 2 and  EGFR kinase domain exons 18-21 in lung cancer. Compared to ARMS, the PCR followed by directed sequencing approach is relatively inexpensive but more cumbersome to perform. Moreover, with a limiting amount of genomic DNA from clinical formalin-fixed, paraffin-embedded (FFPE) specimens or fine biopsies of lung tumors, multiple rounds of PCR and sequencing reactions often get challenging. Here, we report a novel and cost-effective single multiplex-PCR based method, CRE (for  Co-amplification of five  K RAS and  E GFR exons), followed by concatenation of the PCR product as a single linear fragment for direct sequencing. CRE is a robust protocol that can be adapted for routine use in clinical diagnostics with reduced variability, cost and turnaround time requiring a minimal amount of template DNA extracted from FFPE or fresh frozen tumor samples. As a proof of principle, CRE is able to detect the activating  EGFR L858R and T790M  EGFR mutations in lung cancer cell line and primary tumors.

6.
FEBS J ; 281(11): 2688-709, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24720748

ABSTRACT

PSMD9 is a PDZ domain containing chaperone of proteasome assembly. Based on the ability of PDZ-like domains to recognize C-terminal residues in their interactors, we recently predicted and identified heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) as one of the novel interacting partners of PSMD9. Contingent on the reported role of hnRNPA1 in nuclear factor κB (NF-κB) activation, we tested the role of human PSMD9 and hnRNPA1 in NF-κB signaling. We demonstrated in human embryonic kidney 293 cells that PSMD9 influences both basal and tumor necrosis factor α (TNF-α) mediated NF-κB activation through inhibitor of nuclear factor κB α (IκBα) proteasomal degradation. PSMD9 mediates IκBα degradation through a specific domain-motif interaction involving its PDZ domain and a short linear sequence motif in the C-terminus of hnRNPA1. Point mutations in the PDZ domain or deletion of C-terminal residues in hnRNPA1 disrupt interaction between the two proteins which has a direct influence on NF-κB activity. hnRNPA1 interacts with IκBα directly, whereas PSMD9 interacts only through hnRNPA1. Furthermore, hnRNPA1 shows increased association with the proteasome upon TNF-α treatment which has no such effect in the absence of PSMD9. On the other hand endogenous and trans-expressed PSMD9 are found associated with the proteasome complex. This association is unaffected by PDZ mutations or TNF-α treatment. Collectively, these interactions between IκBα, hnRNPA1 and proteasome bound PSMD9 illustrate a potential mechanism by which ubiquitinated IκBα is recruited on the proteasome for degradation. In this process, hnRNPA1 may act as a shuttle receptor and PSMD9 as a subunit acceptor. The interaction sites of PSMD9 and hnRNPA1 may emerge as a vulnerable drug target in cancer cells which require consistent NF-κB activity for survival.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , I-kappa B Proteins/metabolism , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Cell Line , Heterogeneous Nuclear Ribonucleoprotein A1 , Humans , Protein Binding
7.
FEBS Lett ; 588(1): 71-8, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24269678

ABSTRACT

14-3-3 Proteins bind phosphorylated sequences in proteins and regulate multiple cellular functions. For the first time, we show that pure recombinant human 14-3-3 ζ, γ, ε and τ isofoms hydrolyze ATP with similar Km and kcat values. In sharp contrast the sigma isoform has no detectable activity. Docking studies identify two putative binding pockets in 14-3-3 zeta. Mutation of D124A in the amphipathic pocket enhances binding affinity and catalysis. Mutation of a critical Arg (R55A) at the dimer interface in zeta reduces binding and decreases catalysis. These experimental results coincide with a binding pose at the dimer interface. This newly identified function could be a moon lighting function in some of these isoforms.


Subject(s)
14-3-3 Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Recombinant Proteins/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Binding Sites/genetics , Blotting, Western , Humans , Hydrolysis , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Molecular Structure , Mutagenesis , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL