Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Chem Biol ; 19(12): 1448-1457, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37322156

ABSTRACT

Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.


Subject(s)
Nanotubes, Carbon , Autophagy/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Lysosomes/metabolism , Hydrogen-Ion Concentration
2.
J Am Chem Soc ; 146(18): 12454-12462, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38687180

ABSTRACT

Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.


Subject(s)
Quantum Theory , Single-Chain Antibodies/chemistry , Nanotubes, Carbon/chemistry , Protein Folding , Interleukin-6 , Humans , Intrinsically Disordered Proteins/chemistry
3.
Nano Lett ; 23(14): 6588-6595, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37410951

ABSTRACT

Supramolecular hybrids of DNA and single-walled carbon nanotubes (SWCNTs) have been introduced in numerous biosensing applications due to their unique optical properties. Recent aqueous two-phase (ATP) purification methods for SWCNTs have gained popularity by introducing specificity and homogeneity into the sensor design process. Using murine macrophages probed by near-infrared and Raman microscopies, we show that ATP purification increases the retention time of DNA-SWCNTs within cells while simultaneously enhancing the optical performance and stability of the engineered nanomaterial. Over a period of 6 h, we observe 45% brighter fluorescence intensity and no significant change in emission wavelength of ATP-purified DNA-SWCNTs relative to as-dispersed SWCNTs. These findings provide strong evidence of how cells differentially process engineered nanomaterials depending on their state of purification, lending to the future development of more robust and sensitive biosensors with desirable in vivo optical parameters using surfactant-based ATP systems with a subsequent exchange to biocompatible functionalization.


Subject(s)
Nanostructures , Nanotubes, Carbon , Mice , Animals , DNA , Surface-Active Agents , Water , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL