ABSTRACT
The three body fragmentation of methane dication has been studied using the technique of cold target recoil ion momentum spectroscopy. The process is initiated by impact of energetic Ar9+ ions on neutral methane and the data is subsequently collected in coincidence with Ar8+ projectile. By analysing the dissociation channels leading to (H + H+ + CH2+) and (H + H2+ + CH+) fragments, it is concluded that these fragments are formed in a sequential manner via formation of molecular intermediates CH3+ and CH2+ respectively. It is shown that these molecular intermediates carry a few eVs as their internal energies, part of which is released when they emit an H-atom with the open possibility that the final detected fragments may still be internally excited. This was accomplished by analysing the two-steps of the sequential process in their own native frames. For a molecular system having three-dimensional structure, our results prove to be an ideal example to highlight the importance of using native frames for correct interpretation of the obtained results. Our results indicate that the dissociation of methane dication can be a major source of production of H-atoms in addition to H+ fragments with the probability of the two being of similar order.
ABSTRACT
The ion-induced fragmentation of CH4 2+ into H+ and CH3 + is studied using a cold target recoil ion momentum spectroscopy in coincidence with the charge state of the post-collision projectile. Using constant velocity Ar9+ and N3+, results from four different datasets are presented, with a selection on the final charge state of the projectile (Ar8+ or Ar7+ and N2+ or N+). Three distinct dissociation pathways (I, II, and III) are observed for each dataset, with the mean kinetic energy release values of around 4.7, 5.8, and 7.9 eV, respectively. The electronic states that are populated correspond to electronic configurations (1t2)-2 and (2a1)-1(1t2)-1 of the methane dication, CH4 2+. The relative branching ratios between the three pathways are discussed as a function of the charge state of the post-collision projectile, and a strong correlation with the specific nature of the ion-molecule interaction is found. The existing ab initio calculations have provided an explanation only for pathway II. In this article, we propose an explanation for pathway III, but pathway I still remains unexplained and requires further theoretical efforts. A discussion of the dependence of dissociation on the mode of excitation is presented.
ABSTRACT
Fragmentation of molecular nitrogen dimers (N_{2})_{2} induced by collision with low energy 90 keV Ar^{9+} ions is studied to evidence the influence of a molecular environment on the fragmentation dynamics of N_{2} cations. Following the capture of three or four electrons from the dimer, the three-body N_{2}^{+}+N^{m+}+N^{n+} [with (m,n)=(1,1) or (1, 2)] fragmentation channels provide clean experimental cases where molecular fragmentation may occur in the presence of a neighbor molecular cation. The effect of the environment on the fragmentation dynamics within the dimer is investigated through the comparison of the kinetic energy release (KER) spectra for these three-body channels and for isolated N_{2}^{(m+n)+} monomer cations. The corresponding KER spectra exhibit energy shifts of the order of 10 eV, attributed to the deformation of the N^{m+}+N^{n+} potential energy curves in the presence of the neighboring N_{2}^{+} cation. The KER structures remain unchanged, indicating that the primary collision process is not significantly affected by the presence of a neighbor molecule.
ABSTRACT
We provide the experimental evidence that the single electron capture process in slow collisions between O^{3+} ions and neon dimer targets leads to an unexpected production of low-energy electrons. This production results from the interatomic Coulombic decay process, subsequent to inner-shell single electron capture from one site of the neon dimer. Although pure one-electron capture from the inner shell is expected to be negligible in the low collision energy regime investigated here, the electron production due to this process overtakes by 1 order of magnitude the emission of Auger electrons by the scattered projectiles after double-electron capture. This feature is specific to low charge states of the projectile: similar studies with Xe^{20+} and Ar^{9+} projectiles show no evidence of inner-shell single-electron capture. The dependence of the process on the projectile charge state is interpreted using simple calculations based on the classical over the barrier model.
ABSTRACT
Electron capture processes for low energy Ar(9+) ions colliding with Ar(2) dimer targets are investigated, focusing attention on charge sharing between the two Ar atoms as a function of the molecular orientation and the impact parameter. A preference for charge-asymmetric dissociation channels is observed, with a strong correlation between the projectile scattering angle and the molecular ion orientation. The measurements here provide clear evidence that projectiles distinguish each atom in the target and that electron capture from near-site atoms is favored. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets represented as two independent atoms, are compared to the data. They give new insight into the dynamics of the collision by providing, for the different electron capture channels, the two-dimensional probability maps p(b), where b is the impact parameter vector in the molecular frame.
ABSTRACT
We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.
Subject(s)
Alpha Particles , Fullerenes/chemistry , Cations, Divalent/chemistry , Helium/chemistry , Models, Molecular , Molecular Weight , Monte Carlo Method , ThermodynamicsABSTRACT
We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) â C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.
ABSTRACT
We report on measurements of the ionization and fragmentation of polycyclic aromatic hydrocarbon (PAH) targets in Xe(20+) + C(16)H(10) and Xe(20+) + [C(16)H(10)](k) collisions and compare results for the two C(16)H(10) isomers: pyrene and fluoranthene. For both types of targets, i.e., for single PAH molecules isolated in vacuum or for isomerically pure clusters of one of the molecules, the resulting fragment spectra are surprisingly similar. However, we do observe weak but significant isomer effects. Although these are manifested in very different ways for the monomer and cluster targets, they both have at their roots small differences (<2.5 eV) between the total binding energies of neutral, and singly and multiply charged pyrene and fluoranthene monomers. The results will be discussed in view of the density functional theory calculations of ionization and dissociation energies for fluoranthene and pyrene. A simple classical over-the-barrier model is used to estimate cross sections for single- and multiple-electron transfer between PAHs and ions. Calculated single and multiple ionization energies, and the corresponding model PAH ionization cross sections, are given.
ABSTRACT
We measured kinetic energies of the fragment ions of argon dimers multiply ionized by low-energy Ar(9+) collisions. For (Ar2)(4+) dissociation, the asymmetric channel (Ar(3+) + Ar(+)) yield is found unexpectedly higher than the symmetric channel (Ar(2+) + Ar(2+)) yield in contrast with previous observation for covalent molecules or clusters. For the dissociation channel (Ar2)(2+)âAr(+) + Ar(+), two well-separated peaks were observed, clearly evidencing that the direct Coulombic dissociation and the radiative charge transfer followed by ionic dissociation alternatively occur for the dicationic dimers. The respective intensity of these two peaks provides a direct mean to unravel the respective proportion of one-site and two-site double-electron capture, which are found equal for this collision system.
ABSTRACT
We report the first experimental study of ions interacting with clusters of polycyclic aromatic hydrocarbon (PAH) molecules. Collisions between 11.25 keV 3He+ or 360 keV 129Xe20+ and weakly bound clusters of one of the smallest PAH molecules, anthracene, show that C14H10 clusters have much higher tendencies to fragment in ion collisions than other weakly bound clusters. The ionization is dominated by peripheral collisions in which the clusters, very surprisingly, are more strongly heated by Xe20+ collisions than by He+ collisions. The appearance size is k=15 for [C 14H10](k)2+.
ABSTRACT
In this work, we model and simulate the shape evolution of critically charged droplets, from the initial spherical shape to the charge emission and back to the spherical shape. The shape deformation is described using the viscous correction for viscous potential flow model, which is a potential flow approximation of the Navier-Stokes equation for incompressible Newtonian fluids. The simulated shapes are compared to snapshots of experimentally observed drop deformations. We highlight the influence of the dimensionless viscosity and charge carrier mobility of the liquid on the shape evolution of droplets and discuss the observed trends. We give an explanation as to why the observed deformation pathways of positively and negatively charged pure water droplets differ and give a hint as to why negatively charged water droplets emit more charge during charge breakup than positively charged ones.
ABSTRACT
We present a detailed study of the electronic structure and the stability of C(60) dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least approximately 1.5 eV. For C(60)(2-) ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C(60)(2-) ions is singlet. The observed spectrum corresponds to an electronic transition from a t(1u) lowest unoccupied molecular orbital (LUMO) of C(60) to the t(1g) LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10,723 cm(-1) corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm(-1) and (probably) 420 cm(-1) excitation are observed. We argue that a very broad absorption band from about 11,500 cm(-1) to 13,500 cm(-1) consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C(60)(-) may also be a transition to a cone state.
ABSTRACT
We present the deformation pathway of critically charged glycol and water droplets from the onset of the Rayleigh instability and compare it to numerical results, obtained for perfectly conducting inviscid droplets. In this simple model presented here, the time evolution of the droplet shape is given by the velocity potential equation. The Laplace equation for the velocity potential is solved by expanding the potential onto harmonic functions. For the part of the pathway dominated by electrostatic pressure, the calculations reproduce the experimental data nicely, obtained for both, glycol and water microdroplets. We find that the droplet shape and in particular the tips, just before charge emission, are well fitted by a lemon shape. We stress that the tip is tangent to a cone of 39 degrees and thus significantly narrower than a Taylor cone.
ABSTRACT
Amino acid clusters have been studied by several groups and most notably magic number clusters and chiral recognition have been reported. In this work, we have studied the formation of amino acid clusters by electrospray ionization (ESI) and their stability by high-energy collision-induced dissociation (CID). Appearance sizes were determined for multiply charged clusters where the charge is either due to protons or to sodium ions. Finally, we conclude that chiral selectivity plays an important role in cluster formation but seems to be of minor importance for the fragmentation of mixed clusters.
Subject(s)
Amino Acids/chemistry , Algorithms , Helium/chemistry , Molecular Conformation , Protons , Serine/chemistry , Sodium/chemistry , Spectrometry, Mass, Electrospray Ionization , StereoisomerismABSTRACT
An innovative experimental setup, PELIICAEN, allowing the modification of materials and the study of the effects induced by multiply charged ion beams at the nanoscale is presented. This ultra-high vacuum (below 5 × 10-10 mbar) apparatus is equipped with a focused ion beam column using multiply charged ions and a scanning electron microscope developed by Orsay Physics, as well as a scanning probe microscope. The dual beam approach coupled to the scanning probe microscope achieves nanometer scale in situ topological analysis of the surface modifications induced by the ion beams. Preliminary results using the different on-line characterization techniques to study the formation of nano-hillocks on silicon and mica substrates are presented to illustrate the performances of the setup.
ABSTRACT
The interaction of keV He(+), He(2+), and O(5+) ions with isolated alpha and beta isomers of the amino acid alanine was studied by means of high resolution coincidence time-of-flight mass spectrometry. We observed a strong isomer dependence of characteristic fragmentation channels which manifests in strongly altered branching ratios. Despite the ultrashort initial perturbation by the incoming ion, evidence for molecular rearrangement leading to the formation of H(3)(+) was found. The measured kinetic energies of ionic alanine fragments can be sufficient to induce secondary damage to DNA in a biological environment.
Subject(s)
Alanine/chemistry , Mass Spectrometry/methods , Models, Chemical , Models, Molecular , Computer Simulation , Ions , Isomerism , Molecular ConformationABSTRACT
C60(2-) and C70(2-) dianions have been produced by electrospray of the monoanions and subsequent electron pickup in a Na vapor cell. The dianions were stored in an electrostatic ring and their decay by electron emission was measured up to 1 s after injection. While C70(2-) ions are stable on this time scale, except for a small fraction of the ions which have been excited by gas collisions, most of the C60(2-) ions decay on a millisecond time scale, with a lifetime depending strongly on their internal temperature. The results can be modeled as decay by electron tunneling through a Coulomb barrier, mainly from thermally populated triplet states about 120 meV above a singlet ground state. At times longer than about 100 ms, the absorption of blackbody radiation plays an important role for the decay of initially cold ions. The tunneling rates obtained from the modeling, combined with WKB estimates of the barrier penetration, give a ground-state energy 200+/-30 meV above the energy of the monoanion plus a free electron and a ground-state lifetime of the order of 20 s.
ABSTRACT
We have measured the near-infrared absorption spectrum for isolated C60- ions at room temperature. Two bands, at 9145 cm(-1) and 10460 cm(-1), have been identified in addition to the main absorption band at 9382 cm(-1), seen also at low temperature in a matrix. An interpretation based on the theory of dynamic Jahn-Teller effects is proposed.