Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Eye Res ; 229: 109433, 2023 04.
Article in English | MEDLINE | ID: mdl-36858249

ABSTRACT

Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.


Subject(s)
Mucopolysaccharidosis III , Retinal Degeneration , Retinitis Pigmentosa , Animals , Mice , Humans , Adult , Infant , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/diagnosis , Mucopolysaccharidosis III/pathology , Retinal Degeneration/genetics , Mutation , Mice, Knockout , Acetyltransferases/genetics
2.
Oncologist ; 27(12): e938-e948, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36190331

ABSTRACT

BACKGROUND: Ramucirumab is indicated for patients with advanced hepatocellular carcinoma (HCC) and α-fetoprotein (AFP) ≥400 ng/mL following sorafenib. Here, we prospectively studied ramucirumab following non-sorafenib systemic therapies. MATERIALS AND METHODS: This open-label, non-comparative cohort of REACH-2 enrolled patients with advanced HCC, Child-Pugh class-A liver disease, and AFP ≥400 ng/mL who had received 1-2 lines of therapy, excluding sorafenib or chemotherapy. Ramucirumab was administered 8 mg/kg intravenously Q2W. The primary endpoint was safety. Secondary endpoints were overall survival, progression-free survival, objective response rate (RECIST v1.1), time to progression, pharmacokinetics, and patient-reported outcomes. Final analysis occurred after all enrolled patients completed ≥3 treatment cycles or discontinued treatment. RESULTS: Between April 27, 2018, and March 29, 2021, 47 patients were treated at 21 investigative sites in Asia, Europe, and USA. The most frequently reported grade ≥3 adverse events, regardless of causality, were hypertension (11%), proteinuria (6%), hyponatremia (6%), and AST increased (6%). Two patients died from adverse events (myocardial infarction and upper gastrointestinal hemorrhage), deemed related to treatment. Median progression-free survival, time to progression, and overall survival were 1.7 months, 2.8 months, and 8.7 months, respectively. The objective response rate was 10.6% with a median duration response of 8.3 months. Median time to deterioration in FHSI-8 total score was 4.4 months. CONCLUSION: Ramucirumab demonstrated consistent and meaningful clinical activity with no new safety signals following non-sorafenib therapies in patients with advanced HCC and AFP ≥400 ng/mL. This represents one of the first sequencing studies for patients with advanced HCC not treated with sorafenib.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , alpha-Fetoproteins , Liver Neoplasms/drug therapy , Europe
3.
Graefes Arch Clin Exp Ophthalmol ; 260(4): 1275-1288, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34714382

ABSTRACT

PURPOSE: The purpose of this study is to assess for histopathological changes within the retina and the choroid and determine the long-term sequelae of the SARS-CoV-2 infection. METHODS: Eyes from seven COVID-19-positive and six similar age-matched control donors with a negative test for SARS-CoV-2 were assessed. Globes were evaluated ex vivo with macroscopic, SLO and OCT imaging. Macula and peripheral regions were processed for Epon embedding and immunocytochemistry. RESULTS: Fundus analysis shows hemorrhagic spots and increased vitreous debris in several of the COVID-19 eyes compared to the controls. OCT-based measurements indicated an increased trend in retinal thickness in the COVID-19 eyes; however, the difference was not statistically significant. Histology of the retina showed presence of hemorrhages and central cystoid degeneration in several of the donors. Whole mount analysis of the retina labeled with markers showed changes in retinal microvasculature, increased inflammation, and gliosis in the COVID-19 eyes compared to the controls. The choroidal vasculature displayed localized changes in density and signs of increased inflammation in the COVID-19 samples. CONCLUSIONS: In situ analysis of the retinal tissue suggests that there are severe subclinical abnormalities that could be detected in the COVID-19 eyes. This study provides a rationale for evaluating the ocular physiology of patients that have recovered from COVID-19 infections to further understand the long-term effects caused by this virus.


Subject(s)
COVID-19 , Macula Lutea , COVID-19/complications , Choroid/pathology , Gliosis/diagnosis , Gliosis/pathology , Humans , Inflammation/diagnosis , Inflammation/pathology , Retina , SARS-CoV-2 , Tomography, Optical Coherence
4.
Development ; 145(12)2018 06 14.
Article in English | MEDLINE | ID: mdl-29777010

ABSTRACT

Normal development requires tight regulation of cell proliferation and cell death. Here, we have investigated these control mechanisms in the hyaloid vessels, a temporary vascular network in the mammalian eye that requires a Wnt/ß-catenin response for scheduled regression. We investigated whether the hyaloid Wnt response was linked to the oncogene Myc, and the cyclin-dependent kinase inhibitor CDKN1A (P21), both established regulators of cell cycle progression and cell death. Our analysis showed that the Wnt pathway co-receptors LRP5 and LRP6 have overlapping activities that mediate the Wnt/ß-catenin signaling in hyaloid vascular endothelial cells (VECs). We also showed that both Myc and Cdkn1a are downstream of the Wnt response and are required for hyaloid regression but for different reasons. Conditional deletion of Myc in VECs suppressed both proliferation and cell death. By contrast, conditional deletion of Cdkn1a resulted in VEC overproliferation that countered the effects of cell death on regression. When combined with analysis of MYC and CDKN1A protein levels, this analysis suggests that a Wnt/ß-catenin and MYC-CDKN1A pathway regulates scheduled hyaloid vessel regression.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endothelium, Vascular/metabolism , Proto-Oncogene Proteins c-myc/metabolism , beta Catenin/metabolism , Animals , Cell Line , Cyclin-Dependent Kinase Inhibitor p21/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Eye/blood supply , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Mice, Knockout , Proto-Oncogene Proteins c-myc/genetics , Wnt Signaling Pathway/physiology
5.
Invest New Drugs ; 39(1): 182-192, 2021 02.
Article in English | MEDLINE | ID: mdl-32910338

ABSTRACT

Background Treatment options for pancreatic ductal adenocarcinoma (PDAC) are limited and checkpoint blockade inhibitors have been disappointing in this disease. Pegilodecakin has demonstrated single agent anti-tumor activity in immune-sensitive tumors. Phase 1 and preclinical data indicate synergy of pegilodecakin with 5-FU and platins. We assessed the safety and activity of pegilodecakin+FOLFOX in patients with PDAC. Methods IVY (NCT02009449) was an open-label phase 1b trial in the United States. Here we report on all enrolled patients from cohort C. Heavily pretreated patients were treated with pegilodecakin (self-administered subcutaneously daily at 2.5, 5, or 10 µg/kg) + 5-flurouracil/leucovorin/oxaliplatin (FOLFOX), dosed per manufacturers prescribing information, until tumor progression. Eligible patients had measurable disease per immune-related response criteria (irRC), were ≥ 18 years of age, and had ECOG performance status of 0 or 1. Patients were evaluated for primary(safety) and secondary (tumor response per irRC) endpoints. Results From 5 August 2014-12 July 2016, 39 patients enrolled in cohort C. All patients were evaluable for safety. In this advanced population, regimen had manageable toxicities with no immune-related adverse events (irAEs) greater than grade 1. The most common grade 3/4/5 TEAEs were thrombocytopenia (21[53.8%] of 39) and anemia (17[43.6%] of 39). In evaluable PDAC patients, the best overall response of pegilodecakin+FOLFOX was 3(14%) with CRs in 2(9%) patients. Conclusions Pegilodecakin+FOLFOX had an acceptable tolerability profile in PDAC, with no substantial irAEs seen, and promising efficacy with the combination yielding a 2-year OS of 24% (95% CI 10-42). These data led to the phase 3 study with pegilodecakin+FOLFOX as second-line therapy of PDAC (SEQUOIA).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Interleukin-10/therapeutic use , Pancreatic Neoplasms/drug therapy , Polyethylene Glycols/therapeutic use , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/immunology , Dose-Response Relationship, Drug , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Fluorouracil/immunology , Fluorouracil/therapeutic use , Humans , Interleukin-10/administration & dosage , Interleukin-10/adverse effects , Interleukin-10/immunology , Kaplan-Meier Estimate , Leucovorin/administration & dosage , Leucovorin/adverse effects , Leucovorin/immunology , Leucovorin/therapeutic use , Middle Aged , Neoplasm Staging , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects , Organoplatinum Compounds/immunology , Organoplatinum Compounds/therapeutic use , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Progression-Free Survival , Response Evaluation Criteria in Solid Tumors , Pancreatic Neoplasms
6.
FASEB J ; 33(8): 8745-8758, 2019 08.
Article in English | MEDLINE | ID: mdl-31002540

ABSTRACT

A single pool of multipotent retinal progenitor cells give rise to the diverse cell types within the mammalian retina. Such cellular diversity is due to precise control of various cellular processes like cell specification, proliferation, differentiation, and maturation. Circadian clock genes can control the expression of key regulators of cell cycle progression and therefore can synchronize the cell cycle state of a heterogeneous population of cells. Here we show that the protein encoded by the circadian clock gene brain and muscle arnt-like protein-1 (Bmal1) is expressed in the embryonic retina and is required to regulate the timing of cell cycle exit. Accordingly, loss of Bmal1 during retinal neurogenesis results in increased S-phase entry and delayed cell cycle exit. Disruption in cell cycle kinetics affects the timely generation of the appropriate neuronal population thus leading to an overall decrease in the number of retinal ganglion cells, amacrine cells, and an increase in the number of the late-born type II cone bipolar cells as well as the Müller glia. Additionally, the mislocalized Müller cells are observed in the photoreceptor layer in the Bmal1 conditional mutants. These changes affect the functional integrity of the visual circuitry as we report a significant delay in visual evoked potential implicit time in the retina-specific Bmal1 null animals. Our results demonstrate that Bmal1 is required to maintain the balance between the neural and glial cells in the embryonic retina by coordinating the timing of cell cycle entry and exit. Thus, Bmal1 plays an essential role during retinal neurogenesis affecting both development and function of the mature retina.-Sawant, O. B., Jidigam, V. K., Fuller, R. D., Zucaro, O. F., Kpegba, C., Yu, M., Peachey, N. S., Rao, S. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina.


Subject(s)
ARNTL Transcription Factors/metabolism , Ependymoglial Cells/metabolism , Neurogenesis , Retina/cytology , ARNTL Transcription Factors/genetics , Amacrine Cells/cytology , Amacrine Cells/metabolism , Animals , Cell Cycle , Circadian Clocks , Ependymoglial Cells/cytology , Evoked Potentials, Visual , Mice , Retina/embryology , Retina/metabolism , Retina/physiology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism
7.
Nature ; 494(7436): 243-6, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23334418

ABSTRACT

Vascular patterning is critical for organ function. In the eye, there is simultaneous regression of embryonic hyaloid vasculature (important to clear the optical path) and formation of the retinal vasculature (important for the high metabolic demands of retinal neurons). These events occur postnatally in the mouse. Here we have identified a light-response pathway that regulates both processes. We show that when mice are mutated in the gene (Opn4) for the atypical opsin melanopsin, or are dark-reared from late gestation, the hyaloid vessels are persistent at 8 days post-partum and the retinal vasculature overgrows. We provide evidence that these vascular anomalies are explained by a light-response pathway that suppresses retinal neuron number, limits hypoxia and, as a consequence, holds local expression of vascular endothelial growth factor (VEGFA) in check. We also show that the light response for this pathway occurs in late gestation at about embryonic day 16 and requires the photopigment in the fetus and not the mother. Measurements show that visceral cavity photon flux is probably sufficient to activate melanopsin-expressing retinal ganglion cells in the mouse fetus. These data thus show that light--the stimulus for function of the mature eye--is also critical in preparing the eye for vision by regulating retinal neuron number and initiating a series of events that ultimately pattern the ocular blood vessels.


Subject(s)
Eye/blood supply , Eye/growth & development , Fetus/radiation effects , Light Signal Transduction/radiation effects , Light , Retinal Neurons/radiation effects , Rod Opsins/metabolism , Animals , Cell Count , Cell Hypoxia/radiation effects , Eye/metabolism , Eye/radiation effects , Female , Fetus/cytology , Fetus/embryology , Fetus/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Neovascularization, Physiologic/radiation effects , Photons , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/radiation effects , Retinal Neurons/cytology , Retinal Neurons/metabolism , Rod Opsins/deficiency , Rod Opsins/genetics , Vascular Endothelial Growth Factor A/metabolism
8.
Development ; 142(5): 972-82, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25715397

ABSTRACT

The Wnt/ß-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wls(fl/fl)) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/ß-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/ß-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/ß-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wls(fl/fl) mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change.


Subject(s)
Ectoderm/metabolism , Eye/embryology , Eye/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Wnt Signaling Pathway/physiology , Animals , Embryonic Development , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mesoderm/metabolism , Mice , Mice, Transgenic , Morphogenesis/genetics , Morphogenesis/physiology , Tretinoin/metabolism
9.
Mol Vis ; 23: 140-148, 2017.
Article in English | MEDLINE | ID: mdl-28356706

ABSTRACT

PURPOSE: Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. METHODS: ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. RESULTS: The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5tvrm111B homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. CONCLUSIONS: The phenotype of the Lrp5tvrm111B mutant includes abnormalities of the retinal vasculature and of BMD. This model may be a useful resource to further our understanding of the biological role of LRP5 and to evaluate experimental therapies for FEVR or other conditions associated with LRP5 dysfunction.


Subject(s)
Bone Density , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mutagenesis/genetics , Mutation/genetics , Retinal Vessels/abnormalities , Retinal Vessels/physiopathology , Animals , Electroretinography , Gene Expression Regulation , Homozygote , Male , Mice, Inbred C57BL , Organ Size/genetics , Phenotype , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Wnt Signaling Pathway/genetics
10.
Nature ; 474(7352): 511-5, 2011 May 29.
Article in English | MEDLINE | ID: mdl-21623369

ABSTRACT

Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally, somatic deletion in RMCs of the Wnt ligand transporter Wntless results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF). These findings indicate that resident myeloid cells can use a non-canonical, Wnt-Flt1 pathway to suppress angiogenic branching.


Subject(s)
Myeloid Cells/metabolism , Neovascularization, Physiologic/physiology , Retina/cytology , Signal Transduction , Vascular Endothelial Growth Factor Receptor-1/metabolism , Wnt Proteins/metabolism , Animals , Blood Vessels/growth & development , Endothelial Cells/metabolism , Fibroblasts , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-5 , Mice , Receptors, G-Protein-Coupled , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/deficiency , Vascular Endothelial Growth Factor Receptor-1/genetics , Wnt Proteins/deficiency , Wnt Proteins/genetics , Wnt-5a Protein
11.
Blood ; 121(13): 2574-8, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23303818

ABSTRACT

The treatment of festering wounds is one of the most important aspects of medical care. Macrophages are important components of wound repair, both in fending off infection and in coordinating tissue repair. Here we show that macrophages use a Wnt-Calcineurin-Flt1 signaling pathway to suppress wound vasculature and delay repair. Conditional mutants deficient in both Wntless/GPR177, the secretory transporter of Wnt ligands, and CNB1, the essential component of the nuclear factor of activated T cells dephosporylation complex, displayed enhanced angiogenesis and accelerated repair. Furthermore, in myeloid-like cells, we show that noncanonical Wnt activates Flt1, a naturally occurring inhibitor of vascular endothelial growth factor-A-mediated angiogenesis, but only when calcineurin function is intact. Then, as expected, conditional deletion of Flt1 in macrophages resulted in enhanced wound angiogenesis and repair. These results are consistent with the published link between enhanced angiogenesis and enhanced repair, and establish novel therapeutic approaches for treatment of wounds.


Subject(s)
Calcineurin/metabolism , Macrophages/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor Receptor-1/metabolism , Wnt Signaling Pathway/physiology , Wound Healing , Animals , Calcineurin/genetics , Cells, Cultured , Dermis/blood supply , Dermis/injuries , Dermis/metabolism , Macrophages/physiology , Mice , Mice, Transgenic , Neovascularization, Physiologic/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Proteins/physiology , Wnt Signaling Pathway/genetics , Wnt-5a Protein , Wound Healing/genetics , Wound Healing/physiology
12.
Proc Natl Acad Sci U S A ; 109(33): E2197-204, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22745162

ABSTRACT

Recent genome-wide association studies of individuals of Asian and European descent have found that SNPs located within the genomic region (1p31.3) encoding the Wntless (Wls)/Gpr177 protein are associated significantly with reduced bone mineral density. Wls/Gpr177 is a newly identified chaperone protein that specifically escorts Wnt ligands for secretion. Given the strong functional association between the Wnt signaling pathways and bone development and homeostasis, we generated osteoblast-specific Wls-deficient (Ocn-Cre;Wls-flox) mice. Homozygous conditional knockout animals were born at a normal Mendelian frequency. Whole-body dual-energy X-ray absorptiometry scanning revealed that bone-mass accrual was significantly inhibited in homozygotes as early as 20 d of age. These homozygotes had spontaneous fractures and a high frequency of premature lethality at around 2 mo of age. Microcomputed tomography analysis and histomorphometric data revealed a dramatic reduction of both trabecular and cortical bone mass in homozygous mutants. Bone formation in homozygotes was severely impaired, but no obvious phenotypic change was observed in mice heterozygous for the conditional deletion. In vitro studies showed that Wls-deficient osteoblasts had a defect in differentiation and mineralization, with significant reductions in the expression of key osteoblast differentiation regulators. In summary, these results reveal a surprising and crucial role of osteoblast-secreted Wnt ligands in bone-mass accrual.


Subject(s)
Bone Density , Bone and Bones/metabolism , Cell Differentiation , Intracellular Signaling Peptides and Proteins/metabolism , Osteoblasts/metabolism , Animals , Bone Matrix/metabolism , Bone Resorption/diagnostic imaging , Bone Resorption/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Gene Silencing , Heterozygote , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Organ Size , Organ Specificity , Osteoblasts/pathology , Receptors, G-Protein-Coupled , Wnt Signaling Pathway , X-Ray Microtomography
13.
Nat Biotechnol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459338

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.

14.
Development ; 137(22): 3899-910, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20978081

ABSTRACT

Macrophages have been suggested to stimulate neo-lymphangiogenesis in settings of inflammation via two potential mechanisms: (1) acting as a source of lymphatic endothelial progenitor cells via the ability to transdifferentiate into lymphatic endothelial cells and be incorporated into growing lymphatic vessels; and (2) providing a crucial source of pro-lymphangiogenic growth factors and proteases. We set out to establish whether cells of the myeloid lineage are important for development of the lymphatic vasculature through either of these mechanisms. Here, we provide lineage tracing evidence to demonstrate that lymphatic endothelial cells arise independently of the myeloid lineage during both embryogenesis and tumour-stimulated lymphangiogenesis in the mouse, thus excluding macrophages as a source of lymphatic endothelial progenitor cells in these settings. In addition, we demonstrate that the dermal lymphatic vasculature of PU.1(-/-) and Csf1r(-/-) macrophage-deficient mouse embryos is hyperplastic owing to elevated lymphatic endothelial cell proliferation, suggesting that cells of the myeloid lineage provide signals that act to restrain lymphatic vessel calibre in the skin during development. In contrast to what has been demonstrated in settings of inflammation, macrophages do not comprise the principal source of pro-lymphangiogenic growth factors, including VEGFC and VEGFD, in the embryonic dermal microenvironment, illustrating that the sources of patterning and proliferative signals driving embryonic and disease-stimulated lymphangiogenesis are likely to be distinct.


Subject(s)
Dermis/blood supply , Endothelial Cells/cytology , Lymphatic Vessels/cytology , Macrophages/metabolism , Angiopoietin-2/metabolism , Animals , Cell Proliferation , Endothelial Cells/metabolism , Glycoproteins/metabolism , Lymphatic Vessels/embryology , Membrane Transport Proteins , Mice , Monocytes/cytology , Monocytes/metabolism , Myeloid Cells/cytology , Neovascularization, Pathologic/pathology
15.
Ophthalmology ; 120(12): 2706-2713, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24139125

ABSTRACT

PURPOSE: Fetal mice require light exposure in utero during early gestation for normal vascular development in the eye. Because angiogenic abnormalities in retinopathy of prematurity (ROP) are manifested in preterm infants, we investigated whether day length during early gestation was associated with severe ROP (SROP). DESIGN: Single-center, retrospective cohort study. PARTICIPANTS: We included a total of 343 premature infants (401-1250 g birth weight [BW], from 1998-2002): 684 eyes (1 eye each of 2 patients excluded) with 76 eyes developing SROP, defined as (1) classic threshold ROP in zone I or II, (2) type 1 ROP in zone I, or (3) in a few eyes, type 1 ROP in posterior zone II that was treated. METHODS: For each infant, average day length (ADL) was calculated during different cumulative time periods and time windows after the estimated date of conception (EDC). Multiple logistic regression analysis (with generalized estimating equations to account for inter-eye correlation) was performed. MAIN OUTCOME MEASURES: Association of ADL during early gestation with SROP. RESULTS: In a model evaluating all 684 eyes with 76 eyes developing SROP, BW, gestational age, multiple births, race, per capita income in the mother's residence ZIP code, and ADL during the first 90 days after the EDC were factors associated with the development of SROP. Each additional hour of ADL (90 days) decreased the likelihood of SROP by 28% (P = 0.015; odds ratio [OR], 0.72; 95% confidence interval [CI], 0.55-0.94). In a model evaluating the subset of 146 prethreshold ROP eyes with 76 eyes developing SROP, each additional hour of ADL during the first 105 days after the EDC decreased the likelihood of SROP by 46% (P = 0.001; OR, 0.54; 95% CI, 0.37-0.78). Time windows when ADL was most closely associated with SROP were 31 to 60 days and 61 to 90 days after the EDC for the all eyes and the prethreshold ROP eyes models, respectively. CONCLUSIONS: Higher ADL during early gestation was associated with a lower risk for SROP and may imply a role for prophylactic light treatment during early gestation to decrease the risk of SROP.


Subject(s)
Infant, Premature , Photoperiod , Pregnancy , Retinopathy of Prematurity/etiology , Cohort Studies , Female , Gestational Age , Humans , Infant, Newborn , Infant, Very Low Birth Weight , Male , Parity , Retrospective Studies , Risk Factors , Seasons , Time Factors
16.
Proc Natl Acad Sci U S A ; 107(9): 4194-9, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20160075

ABSTRACT

Macrophages are required for tissue homeostasis through their role in regulation of the immune response and the resolution of injury. Here we show, using the kidney as a model, that the Wnt pathway ligand Wnt7b is produced by macrophages to stimulate repair and regeneration. When macrophages are inducibly ablated from the injured kidney, the canonical Wnt pathway response in kidney epithelial cells is reduced. Furthermore, when Wnt7b is somatically deleted in macrophages, repair of injury is greatly diminished. Finally, injection of the Wnt pathway regulator Dkk2 enhances the repair process and suggests a therapeutic option. Because Wnt7b is known to stimulate epithelial responses during kidney development, these findings suggest that macrophages are able to rapidly invade an injured tissue and reestablish a developmental program that is beneficial for repair and regeneration.


Subject(s)
Kidney/physiology , Macrophages/metabolism , Proto-Oncogene Proteins/physiology , Regeneration , Wnt Proteins/physiology , Animals , Base Sequence , Cell Cycle , DNA Primers , Intercellular Signaling Peptides and Proteins/physiology , Kidney/cytology , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Proto-Oncogene Proteins/metabolism , Signal Transduction , Wnt Proteins/metabolism
17.
Commun Biol ; 5(1): 792, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933488

ABSTRACT

Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Mammals , Mice , Neovascularization, Pathologic/metabolism , Photoperiod , Retina/metabolism
18.
Nature ; 437(7057): 417-21, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16163358

ABSTRACT

Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indicate that macrophages can use WNT ligands to influence cell-fate decisions--including cell death--in adjacent cells, and raise the possibility that they do so in many different cellular contexts.


Subject(s)
Apoptosis , Endothelial Cells/cytology , Endothelial Cells/metabolism , Eye/blood supply , Glycoproteins/metabolism , Macrophages/metabolism , Neovascularization, Physiologic , Proto-Oncogene Proteins/metabolism , Animals , Glycoproteins/genetics , Ligands , Macrophages/cytology , Macrophages/physiology , Macrophages/transplantation , Mice , Mice, Transgenic , Paracrine Communication , Proto-Oncogene Proteins/genetics , Wnt Proteins
19.
Life (Basel) ; 11(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202240

ABSTRACT

Oxygen supplementation is necessary to prevent mortality in severely premature infants. However, the supraphysiological concentration of oxygen utilized in these infants simultaneously creates retinovascular growth attenuation and vasoobliteration that induces the retinopathy of prematurity. Here, we report that hyperoxia regulates the cell cycle and retinal endothelial cell proliferation in a previously unknown Myc-dependent manner, which contributes to oxygen-induced retinopathy.

20.
medRxiv ; 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33655272

ABSTRACT

PURPOSE: To assess for histopathological changes within the retina and the choroid and determine the long-term sequelae of the SARS-CoV-2 infection. DESIGN: Comparative analysis of human eyes. SUBJECTS: Eleven donor eyes from COVID-19 positive donors and similar age-matched donor eyes from patients with a negative test for SARS-CoV-2 were assessed. METHODS: Globes were evaluated ex-vivo with macroscopic, SLO and OCT imaging. Macula and peripheral regions were processed for epon-embedding and immunocytochemistry. MAIN OUTCOME MEASURES: Retinal thickness and histopathology, detection of SARS-CoV-2 Spike protein, changes in vascular density, gliosis, and degree of inflammation. RESULTS: Fundus analysis shows hemorrhagic spots and increased vitreous debris in several of the COVID-19 eyes compared to the control. OCT based measurements indicated an increased trend in retinal thickness in the COVID-19 eyes, however the difference was not statistically significant. Histology of the retina showed presence of hemorrhages and central cystoid degeneration in several of the donors. Whole mount analysis of the retina labeled with markers showed changes in retinal microvasculature, increased inflammation, and gliosis in the COVID-19 eyes compared to the controls. The choroidal vasculature displayed localized changes in density and signs of increased inflammation in the COVID-19 samples. CONCLUSIONS: In situ analysis of the retinal tissue suggested that there are severe subclinical abnormalities that could be detected in the COVID-19 eyes. This study provides a rationale for evaluating the ocular physiology of patients that have recovered from COVID-19 infections to further understand the long-term effects caused by this virus.

SELECTION OF CITATIONS
SEARCH DETAIL