Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Opt ; 62(12): 3125-3131, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37133160

ABSTRACT

A wafer-bonded InGaAs/Si avalanche photodiode (APD) at a wavelength of 1550 nm was theoretically simulated. We focused on the effect of the I n 1-x G a x A s multigrading layers and bonding layers on the electric fields, electron and hole concentrations, recombination rates, and energy bands. In this work, I n 1-x G a x A s multigrading layers inserted between Si and InGaAs were adopted to reduce the discontinuity of the conduction band between Si and InGaAs. A bonding layer was introduced at the InGaAs/Si interface to isolate the mismatched lattices to achieve a high-quality InGaAs film. In addition, the bonding layer can further regulate the electric field distribution in the absorption and multiplication layers. The wafer-bonded InGaAs/Si APD, structured by a polycrystalline silicon (poly-Si) bonding layer and I n 1-x G a x A s multigrading layers (x changes from 0.5 to 0.85), displayed the highest gain-bandwidth product (GBP). When the APD operates in Geiger mode, the single-photon detection efficiency (SPDE) of the photodiode is 20%, and the dark count rate (DCR) is 1 MHz at 300 K. Moreover, one finds that the DCR is lower than 1 kHz at 200 K. These results indicate that high-performance InGaAs/Si SPAD can be achieved through a wafer-bonded platform.

SELECTION OF CITATIONS
SEARCH DETAIL