Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 28(8): 858-74, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24736844

ABSTRACT

Although regulation of stem cell homeostasis by microRNAs (miRNAs) is well studied, it is unclear how individual miRNAs genomically encoded within an organized polycistron can interact to induce an integrated phenotype. miR-99a/100, let-7, and miR-125b paralogs are encoded in two tricistrons on human chromosomes 11 and 21. They are highly expressed in hematopoietic stem cells (HSCs) and acute megakaryoblastic leukemia (AMKL), an aggressive form of leukemia with poor prognosis. Here, we show that miR-99a/100∼125b tricistrons are transcribed as a polycistronic message transactivated by the homeobox transcription factor HOXA10. Integrative analysis of global gene expression profiling, miRNA target prediction, and pathway architecture revealed that miR-99a/100, let-7, and miR-125b functionally converge at the combinatorial block of the transforming growth factor ß (TGFß) pathway by targeting four receptor subunits and two SMAD signaling transducers. In addition, down-regulation of tumor suppressor genes adenomatous polyposis coli (APC)/APC2 stabilizes active ß-catenin and enhances Wnt signaling. By switching the balance between Wnt and TGFß signaling, the concerted action of these tricistronic miRNAs promoted sustained expansion of murine and human HSCs in vitro or in vivo while favoring megakaryocytic differentiation. Hence, our study explains the high phylogenetic conservation of the miR-99a/100∼125b tricistrons controlling stem cell homeostasis, the deregulation of which contributes to the development of AMKL.


Subject(s)
Hematopoietic Stem Cells/metabolism , Homeostasis/genetics , MicroRNAs , Signal Transduction , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , Animals , Apoptosis/genetics , Down-Regulation , Erythropoiesis/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, APC/physiology , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Binding , Thrombopoiesis/genetics , Wnt Proteins/genetics
2.
Klin Padiatr ; 233(6): 267-277, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34407551

ABSTRACT

Children with Down syndrome are at a high risk of developing transient abnormal myelopoiesis (TAM; synonym: TMD) or myeloid leukemia (ML-DS). While most patients with TAM are asymptomatic and go into spontaneous remission without a need for therapy, around 20% of patients die within the first six months due to TAM-related complications. Another 20-30% of patients progress from TAM to ML-DS. ML-DS patients are particularly vulnerable to therapy-associated toxicity, but the prognosis of relapsed ML-DS is extremely poor - thus, ML-DS therapy schemata must strive for a balance between appropriate efficacy (to avoid relapses) and treatment-related toxicity. This guideline presents diagnostic and therapeutic strategies for TAM and ML-DS based on the experience and results of previous clinical studies from the BFM working group, which have helped reduce the risk of early death in symptomatic TAM patients using low-dose cytarabine, and which have achieved excellent cure rates for ML-DS using intensity-reduced treatment protocols.


Subject(s)
Down Syndrome , Leukemia, Myeloid , Leukemoid Reaction , Child , Down Syndrome/diagnosis , Down Syndrome/therapy , GATA1 Transcription Factor/genetics , Humans , Leukemoid Reaction/diagnosis , Leukemoid Reaction/therapy
3.
Blood ; 129(25): 3314-3321, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28400376

ABSTRACT

Children with myeloid leukemia associated with Down syndrome (ML-DS) have superior outcome compared with non-DS patients, but suffer from higher constitutional cytotoxic drug susceptibility. We analyzed the outcome of 170 pediatric patients with ML-DS enrolled in the prospective, multicenter, open-label, nonrandomized ML-DS 2006 trial by Nordic Society for Pediatric Hematology and Oncology (NOPHO), Dutch Childhood Oncology Group (DCOG), and Acute Myeloid Leukemia-Berlin-Frankfurt-Münster (AML-BFM) study group. Compared with the historical control arm (reduced-intensity protocol for ML-DS patients from the AML-BFM 98 trial), treatment intensity was reduced by lowering the cumulative dose of etoposide (950 to 450 mg/m2) and intrathecal central nervous system prophylaxis while omitting maintenance therapy. Still, 5-year overall survival (89% ± 3% vs 90% ± 4%; Plog-rank = .64), event-free survival (EFS; 87% ± 3% vs 89% ± 4%; Plog-rank = .71), and cumulative incidence of relapse/nonresponse (CIR/NR; 6% ± 3% vs 6% ± 2%; PGray = .03) did not significantly differ between the ML-DS 2006 trial and the historical control arm. Poor early treatment response (5-year EFS, 58% ± 16% vs 88% ± 3%; Plog rank = .0008) and gain of chromosome 8 (CIR/NR, 16% ± 7% vs 3% ± 2%, PGray = .02; 5-year EFS, 73% ± 8% vs 91% ± 4%, Plog rank = .018) were identified as independent prognostic factors predicting a worse EFS. Five of 7 relapsed patients (71%) with cytogenetic data had trisomy 8. Our study reveals prognostic markers for children with ML-DS and illustrates that reducing therapy did not impair excellent outcome. The trial was registered at EudraCT as #2007-006219-2.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Down Syndrome/complications , Leukemia, Myeloid/complications , Leukemia, Myeloid/drug therapy , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Child, Preschool , Chromosomes, Human, Pair 8/genetics , Cytarabine/adverse effects , Cytarabine/therapeutic use , Cytogenetic Analysis , Disease-Free Survival , Down Syndrome/genetics , Etoposide/adverse effects , Etoposide/therapeutic use , Female , Humans , Idarubicin/adverse effects , Idarubicin/therapeutic use , Infant , Leukemia, Myeloid/genetics , Male , Prospective Studies , Treatment Outcome , Trisomy/genetics
4.
Haematologica ; 104(1): 120-127, 2019 01.
Article in English | MEDLINE | ID: mdl-30093401

ABSTRACT

Despite intensified salvage treatments, children with relapsed/refractory acute myeloid leukemia (AML) have poor survival. We evaluated gemtuzumab ozogamicin (CD33-targeted drug) used on a compassionate basis in patients diagnosed from 1995 until 2014 within Acute Myeloid Leukemia Berlin-Frankfurt-Münster studies, and identified 76 patients (<18 years) with highly-advanced and pre-treated AML [refractory de novo acute myeloid leukemia (n=10), de novo AML refractory to relapse (1st early: n=41; 1st late: n=10; 2nd or more: n=10), and secondary AML (n=5)]. At doses of 2.5-10 mg/m2, gemtuzumab ozogamicin was administered in 1-4 cycles as single agent (47%), combined with cytarabine (47%), or others (6%). Most common grade 3/4 adverse events were infections or febrile neutropenia (78% of severe adverse events), infusion-related immunological reactions (6%), and gastrointestinal symptoms (5%). Three patients experienced veno-occlusive disease (one fatal due to exacerbation of a pre-existing cardiomyopathy). Sixty-four percent received subsequent hematopoietic stem cell transplantation. Probability of 4-year overall survival was 18±5% in all, 27±7% in patients with and 0% in patients without hematopoietic stem cell transplantation (P<0.0001). Administration of gemtuzumab ozogamicin on a patient-specific, compassionate use basis was frequently considered in our study group and proved to be effective for bridging children with very advanced AML to hematopoietic stem cell transplantation. Uniform prospective studies for these patients are urgently needed.


Subject(s)
Gemtuzumab/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Child , Disease-Free Survival , Female , Gemtuzumab/adverse effects , Humans , Male , Survival Rate , Time Factors
5.
Blood ; 127(26): 3424-30, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27114462

ABSTRACT

Genetic abnormalities and early treatment response are the main prognostic factors in acute myeloid leukemia (AML). Acute megakaryoblastic leukemia (AMKL) is a rare subtype of AML. Deep sequencing has identified CBFA2T3/GLIS2 and NUP98/KDM5A as recurrent aberrations, occurring in similar frequencies as RBM15/MKL1 and KMT2A-rearrangements. We studied whether these cytogenetic aberrations can be used for risk group stratification. To assess frequencies and outcome parameters of recurrent cytogenetic aberrations in AMKL, samples and clinical data of patients treated by the Associazione Italiana Ematologia Oncologia Pediatrica, Berlin-Frankfurt-Munster Study Group, Children's Oncology Group, Dutch Childhood Oncology Group, and the Saint Louis Hôpital were collected, enabling us to screen 153 newly diagnosed pediatric AMKL cases for the aforementioned aberrations and to study their clinical characteristics and outcome. CBFA2T3/GLIS2 was identified in 16% of the cases; RBM15/MKL1, in 12%; NUP98/KDM5A and KMT2A rearrangements, in 9% each; and monosomy 7, in 6%. These aberrations were mutually exclusive. RBM15/MKL1-rearranged patients were significantly younger. No significant differences in sex and white blood cell count were found. NUP98/KDM5A, CBFA2T3/GLIS2, KMT2A-rearranged lesions and monosomy 7 (NCK-7) independently predicted a poor outcome, compared with RBM15/MKL1-rearranged patients and those with AMKL not carrying these molecular lesions. NCK-7-patients (n = 61) showed a 4-year probability of overall survival of 35 ± 6% vs 70 ± 5% in the RBM15/MKL1-other groups (n = 92, P < .0001) and 4-year probability of event-free survival of 33 ± 6% vs 62 ± 5% (P = .0013), the 4-year cumulative incidence of relapse being 42 ± 7% and 19 ± 4% (P = .003), respectively. We conclude that these genetic aberrations may be used for risk group stratification of pediatric AMKL and for treatment tailoring.


Subject(s)
Chromosome Aberrations , Chromosomes, Human/genetics , Gene Rearrangement , Leukemia, Megakaryoblastic, Acute/genetics , Neoplasm Proteins/genetics , Adolescent , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Leukemia, Megakaryoblastic, Acute/mortality , Male , Risk Factors
6.
Haematologica ; 103(9): 1484-1492, 2018 09.
Article in English | MEDLINE | ID: mdl-29773602

ABSTRACT

Survival in children with relapsed/refractory acute myeloid leukemia is unsatisfactory. Treatment consists of one course of fludarabine, cytarabine and liposomal daunorubicin, followed by fludarabine and cytarabine and stem-cell transplantation. Study ITCC 020/I-BFM 2009-02 aimed to identify the recommended phase II dose of clofarabine replacing fludarabine in the abovementioned combination regimen (3+3 design). Escalating dose levels of clofarabine (20-40 mg/m2/day × 5 days) and liposomal daunorubicin (40-80 mg/m2/day) were administered with cytarabine (2 g/m2/day × 5 days). Liposomal DNR was given on day 1, 3 and 5 only. The cohort at the recommended phase II dose was expanded to make a preliminary assessment of anti-leukemic activity. Thirty-four children were enrolled: refractory 1st (n=11), early 1st (n=15), ≥2nd relapse (n=8). Dose level 3 (30 mg/m2clofarabine; 60 mg/m2liposomal daunorubicin) appeared to be safe only in patients without subclinical fungal infections. Infectious complications were dose-limiting. The recommended phase II dose was 40 mg/m2 clofarabine with 60 mg/m2 liposomal daunorubicin. Side-effects mainly consisted of infections. The overall response rate was 68% in 31 response evaluable patients, and 80% at the recommended phase II dose (n=10); 22 patients proceeded to stem cell transplantation. The 2-year probability of event-free survival (pEFS) was 26.5±7.6 and probability of survival (pOS) 32.4±8.0%. In the 21 responding patients, the 2-year pEFS was 42.9±10.8 and pOS 47.6±10.9%. Clofarabine exposure in plasma was not significantly different from that in single-agent studies. In conclusion, clofarabine was well tolerated and showed high response rates in relapsed/refractory pediatric acute myeloid leukemia. Patients with (sub) clinical fungal infections should be treated with caution. Clofarabine has been taken forward in the Berlin-Frankfurt-Münster study for newly diagnosed acute myeloid leukemia. The Study ITCC-020 was registered as EUDRA-CT 2009-009457-13; Dutch Trial Registry number 1880.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Adolescent , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Child , Child, Preschool , Clofarabine/administration & dosage , Clofarabine/pharmacokinetics , Cytarabine/administration & dosage , Cytarabine/pharmacokinetics , Daunorubicin/administration & dosage , Daunorubicin/pharmacokinetics , Drug Administration Schedule , Drug Resistance, Neoplasm , Female , Humans , Infant , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/mortality , Liposomes , Male , Recurrence , Remission Induction , Retreatment , Survival Analysis , Treatment Outcome , Young Adult
7.
Klin Padiatr ; 230(6): 299-304, 2018 Oct.
Article in German | MEDLINE | ID: mdl-30399642

ABSTRACT

The treatment of acute promyelocytic leukemia (APL) has changed significantly in recent years. Today, APL patients with standard risk (also known as low risk) can be treated chemotherapy-free only with all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO). For high-risk patients, induction chemotherapy should be added. The curative results are good and comparable to those achieved in the past with chemotherapy plus ATRA. However, toxicities, especially infectious complications, are reduced. The main risk remains early lethal bleeding. Timely diagnosis and early ATRA treatment can reduce this risk. This review presents and discusses current treatment strategies and recommendations for APL in children.


Subject(s)
Antineoplastic Agents/therapeutic use , Arsenic Trioxide/therapeutic use , Leukemia, Promyelocytic, Acute/drug therapy , Tretinoin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Child , Humans , Treatment Outcome
8.
Am J Med Genet A ; 173(4): 1017-1037, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168833

ABSTRACT

Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.


Subject(s)
Genetic Predisposition to Disease , Hematologic Neoplasms/diagnosis , Mutation , Neoplasm Proteins/genetics , Neoplasms/diagnosis , Adolescent , Child , Focus Groups/methods , Gene Expression , Genetic Counseling/ethics , Genetic Testing/methods , Genetics, Medical/history , Genetics, Medical/instrumentation , Genetics, Medical/methods , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , History, 21st Century , Humans , Neoplasms/genetics , Neoplasms/pathology , Societies, Medical/history , Syndrome
9.
Cancer ; 122(24): 3821-3830, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27529519

ABSTRACT

BACKGROUND: To obtain better insight into the biology of acute myeloid leukemia (AML) in various age groups, this study focused on the genetic changes occurring during a lifetime. METHODS: This study analyzed the relation between age and genetics from birth to 100 years in 5564 patients with de novo AML diagnosed from 1998 to 2012 (1192 patients from nationwide pediatric studies [AML Berlin-Frankfurt-Münster studies 98 and 2004] and 4372 adults registered with the Munich Leukemia Laboratory). RESULTS: The frequencies of cytogenetic subgroups were age-dependent. Favorable subtypes (t(8;21), inv(16)/t(16;16), and t(15;17)) decreased in general from the pediatric age group (2 to < 18 years; 33%) to the oldest groups (<5% for > 70 years; P < .0001). Unfavorable cytogenetics (-7/del(7), -5/del(5q) or 5p, inv(3)/t(3;3), t(6;9), complex karyotype, 12p, 17p, and 11q23/mixed-lineage leukemia aberrations, excluding t(9;11)) were frequent (42%) in infants (<2 years), had a low frequency in children and young adults (<22%), and increased in frequency up to 36% in patients older than 85 years (P = .01). This was even more significant for complex karyotypes (P ≤ .0001), which also showed a strong increase in the absolute age-specific incidence with age. Interestingly, the frequency of 11q23 abnormalities decreased from infants to older patients. The proportion of clinically relevant molecular aberrations of CCAAT/enhancer binding protein α, nucleophosmin (NPM1), and NPM1/fms-related tyrosine kinase 3-internal tandem duplication increased with age. CONCLUSIONS: Altogether, with the exclusion of infants, a significant decrease in the proportion of favorable cytogenetic subtypes and an increase in unfavorable cytogenetics were observed with increasing age. These findings indicate different mechanisms for the pathogenesis of AML; these different mechanisms also suggest directions for etiological research and contribute to the more unfavorable prognosis with increasing age. Cancer 2016;122:3821-3830. © 2016 American Cancer Society.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Chromosome Aberrations , Cytogenetic Analysis/methods , Cytogenetics/methods , Female , Humans , Infant , Infant, Newborn , Karyotyping , Male , Middle Aged , Molecular Biology/methods , Nucleophosmin , Prognosis , Young Adult
10.
Ann Hematol ; 94(8): 1327-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25913479

ABSTRACT

Despite recent advances in the treatment of children with acute megakaryoblastic leukemia (AMKL) using intensified treatment protocols, clear prognostic indicators, and treatment recommendations for this acute myeloid leukemia (AML) subgroup are yet to be defined. Here, we report the outcome of 97 pediatric patients with de novo AMKL (excluding Down syndrome [DS]) enrolled in the prospective multicenter studies AML-BFM 98 and AML-BFM 04 (1998-2014). AMKL occurred in 7.4 % of pediatric AML cases, at younger age (median 1.44 years) and with lower white blood cell count (mean 16.5 × 10(9)/L) as compared to other AML subgroups. With 60 ± 5 %, children with AMKL had a lower 5-year overall survival (5-year OS; vs. 68 ± 1 %, P log rank = 0.038). Yet, we achieved an improved 5-year OS in AML-BFM 04 compared to AML-BFM 98 (70 ± 6 % vs. 45 ± 8 %, P log rank = 0.041). Allogeneic hematopoietic stem cell transplantation in first remission did not provide a significant survival benefit (5-year OS 70 ± 11 % vs. 63 ± 6 %; P Mantel-Byar = 0.85). Cytogenetic data were available for n = 78 patients. AMKL patients with gain of chromosome 21 had a superior 5-year OS (80 ± 9 %, P log rank = 0.034), whereas translocation t(1;22)(p13;q13) was associated with an inferior 5-year event-free survival (38 ± 17 %, P log rank = 0.04). However, multivariate analysis showed that treatment response (bone marrow morphology on day 15 and 28) was the only independent prognostic marker (RR = 4.39; 95 % CI, 1.97-9.78). Interestingly, GATA1-mutations were detected in six patients (11 %) without previously known trisomy 21. Thus, AMKL (excluding DS) remains an AML subgroup with inferior outcome. Nevertheless, with intensive therapy regimens, a steep increase in the survival rates was achieved.


Subject(s)
Leukemia, Megakaryoblastic, Acute/diagnosis , Leukemia, Megakaryoblastic, Acute/therapy , Adolescent , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Infant , Infant, Newborn , Leukemia, Megakaryoblastic, Acute/epidemiology , Male , Prospective Studies , Treatment Outcome
11.
Blood Adv ; 8(12): 3200-3213, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38621200

ABSTRACT

ABSTRACT: A comprehensive international consensus on the cytogenetic risk-group stratification of KMT2A-rearranged (KMT2A-r) pediatric acute myeloid leukemia (AML) is lacking. This retrospective (2005-2016) International Berlin-Frankfurt-Münster Study Group study on 1256 children with KMT2A-r AML aims to validate the prognostic value of established recurring KMT2A fusions and additional cytogenetic aberrations (ACAs) and to define additional, recurring KMT2A fusions and ACAs, evaluating their prognostic relevance. Compared with our previous study, 3 additional, recurring KMT2A-r groups were defined: Xq24/KMT2A::SEPT6, 1p32/KMT2A::EPS15, and 17q12/t(11;17)(q23;q12). Across 13 KMT2A-r groups, 5-year event-free survival probabilities varied significantly (21.8%-76.2%; P < .01). ACAs occurred in 46.8% of 1200 patients with complete karyotypes, correlating with inferior overall survival (56.8% vs 67.9%; P < .01). Multivariable analyses confirmed independent associations of 4q21/KMT2A::AFF1, 6q27/KMT2A::AFDN, 10p12/KMT2A::MLLT10, 10p11.2/KMT2A::ABI1, and 19p13.3/KMT2A::MLLT1 with adverse outcomes, but not those of 1q21/KMT2A::MLLT11 and trisomy 19 with favorable and adverse outcomes, respectively. Newly identified ACAs with independent adverse prognoses were monosomy 10, trisomies 1, 6, 16, and X, add(12p), and del(9q). Among patients with 9p22/KMT2A::MLLT3, the independent association of French-American-British-type M5 with favorable outcomes was confirmed, and those of trisomy 6 and measurable residual disease at end of induction with adverse outcomes were identified. We provide evidence to incorporate 5 adverse-risk KMT2A fusions into the cytogenetic risk-group stratification of KMT2A-r pediatric AML, to revise the favorable-risk classification of 1q21/KMT2A::MLLT11 to intermediate risk, and to refine the risk-stratification of 9p22/KMT2A::MLLT3 AML. Future studies should validate the associations between the newly identified ACAs and outcomes and unravel the underlying biological pathogenesis of KMT2A fusions and ACAs.


Subject(s)
Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Child , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Female , Child, Preschool , Adolescent , Infant , Prognosis , Chromosome Aberrations , Gene Rearrangement , Retrospective Studies
12.
Blood Adv ; 7(6): 1045-1055, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36332007

ABSTRACT

Hypodiploidy, defined as modal numbers (MNs) 45 or lower, has not been independently investigated in pediatric acute myeloid leukemia (AML) but is a well-described high-risk factor in pediatric acute lymphoblastic leukemia. We aimed to characterize and study the prognostic impact of hypodiploidy in pediatric AML. In this retrospective cohort study, we included children below 18 years of age with de novo AML and a hypodiploid karyotype diagnosed from 2000 to 2015 in 14 childhood AML groups from the International Berlin-Frankfurt-Münster (I-BFM) framework. Exclusion criteria comprised constitutional hypodiploidy, monosomy 7, composite karyotype, and t(8;21) with concurring sex chromosome loss. Hypodiploidy occurred in 81 patients (1.3%) with MNs, 45 (n = 66); 44 (n = 10) and 43 (n = 5). The most frequently lost chromosomes were chromosome 9 and sex chromosomes. Five-year event-free survival (EFS) and overall survival (OS) were 34% and 52%, respectively, for the hypodiploid cohort. Children with MN≤44 (n = 15) had inferior EFS (21%) and OS (33%) compared with children with MN = 45 (n = 66; EFS, 37%; OS, 56%). Adjusted hazard ratios (HRs) were 4.9 (P = .001) and 6.1 (P = .003). Monosomal karyotype or monosomy 9 had particular poor OS (43% and 15%, respectively). Allogeneic stem cell transplantation (SCT) in first complete remission (CR1) (n = 18) did not mitigate the unfavorable outcome of hypodiploidy (adjusted HR for OS was 1.5; P = .42). We identified pediatric hypodiploid AML as a rare subgroup with an inferior prognosis even in the patients treated with SCT in CR1.


Subject(s)
Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Retrospective Studies , Prognosis , Remission Induction
13.
J Clin Oncol ; 41(16): 2963-2974, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36996387

ABSTRACT

PURPOSE: A previous study by the International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) on childhood KMT2A-rearranged (KMT2A-r) AML demonstrated the prognostic value of the fusion partner. This I-BFM-SG study investigated the value of flow cytometry-based measurable residual disease (flow-MRD) and evaluated the benefit of allogeneic stem-cell transplantation (allo-SCT) in first complete remission (CR1) in this disease. METHODS: A total of 1,130 children with KMT2A-r AML, diagnosed between January 2005 and December 2016, were assigned to high-risk (n = 402; 35.6%) or non-high-risk (n = 728; 64.4%) fusion partner-based groups. Flow-MRD levels at both end of induction 1 (EOI1) and 2 (EOI2) were available for 456 patients and were considered negative (<0.1%) or positive (≥0.1%). End points were 5-year event-free survival (EFS), cumulative incidence of relapse (CIR), and overall survival (OS). RESULTS: The high-risk group had inferior EFS (30.3% high risk v 54.0% non-high risk; P < .0001), CIR (59.7% v 35.2%; P < .0001), and OS (49.2% v 70.5%; P < .0001). EOI2 MRD negativity was associated with superior EFS (n = 413; 47.6% MRD negativity v n = 43; 16.3% MRD positivity; P < .0001) and OS (n = 413; 66.0% v n = 43; 27.9%; P < .0001), and showed a trend toward lower CIR (n = 392; 46.1% v n = 26; 65.4%; P = .016). Similar results were obtained for patients with EOI2 MRD negativity within both risk groups, except that within the non-high-risk group, CIR was comparable with that of patients with EOI2 MRD positivity. Allo-SCT in CR1 only reduced CIR (hazard ratio, 0.5 [95% CI, 0.4 to 0.8]; P = .00096) within the high-risk group but did not improve OS. In multivariable analyses, EOI2 MRD positivity and high-risk group were independently associated with inferior EFS, CIR, and OS. CONCLUSION: EOI2 flow-MRD is an independent prognostic factor and should be included as risk stratification factor in childhood KMT2A-r AML. Treatment approaches other than allo-SCT in CR1 are needed to improve prognosis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Child , Humans , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Prognosis , Recurrence , Neoplasm, Residual/etiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy
14.
Cancer Genet ; 254-255: 70-74, 2021 06.
Article in English | MEDLINE | ID: mdl-33647814

ABSTRACT

The co-occurrence of an inversion inv(3)(q21q26)/GATA2-MECOM and a Philadelphia translocation t(9;22)(q34;q11)/BCR-ABL1 in the context of chronic myeloid leukemia (CML) in blast crisis or acute myeloid leukemia (AML) has only rarely been described. To our knowledge, this co-occurrence has been reported in six pediatric patients with CML but not in pediatric patients with AML. Here, we report on a 7-year-old girl, who, presented with a t(9;22) and inv(3) in 14 of 15 metaphases and an additional monosomy 7 was detected in 5 of these metaphases (ISCN: 46,​XX,​inv(3)(q21q26),​t(9;22)(q34q11)[9]/45,​idem,​-7[5]/46,​XX[1]). The p190 BCR-ABL1 fusion transcript was detected by multiplex PCR and targeted RNA sequencing. Due to these results, a clear distinction between a CML in blast crisis and a BCR-ABL1 positive AML was not possible. The patient was treated according to the treatment recommendations of the AML-BFM study group and additionally received tyrosine kinase inhibitor therapy (Dasatinib). The treatment with Dasatinib was successful in eliminating the inv(3)/t(9;22) clone, but the ancestral inv(3) clone persisted. Based upon these findings we diagnosed an AML with inv(3) and a secondary acquisition of t(9;22). This treatment as well as an allogenic transplantation has led to a complete remission of the disease up to this date (21 months post diagnosis).


Subject(s)
Blast Crisis/genetics , Chromosome Inversion/genetics , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 9/genetics , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Acute/genetics , Translocation, Genetic , Child , Clone Cells/pathology , Cytogenetic Analysis , Fusion Proteins, bcr-abl/metabolism , Humans
15.
Cancers (Basel) ; 13(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672815

ABSTRACT

Successful management of relapse is critical to improve outcomes of children with acute myeloid leukemia (AML). We evaluated response, survival and prognostic factors after a second relapse of AML. Among 1222 pediatric patients of the population-based AML-Berlin-Frankfurt-Munster (BFM) study group (2004 until 2017), 73 patients met the quality parameters for inclusion in this study. Central review of source documentation warranted the accuracy of reported data. Treatment approaches included palliation in 17 patients (23%), intensive therapy with curative intent (n = 46, 63%) and other regimens (n = 10). Twenty-five patients (35%) received hematopoietic stem cell transplantation (HSCT), 21 of whom (88%) had a prior HSCT. Survival was poor, with a five-year probability of overall survival (pOS) of 15 ± 4% and 31 ± 9% following HSCT (n = 25). Early second relapse (within one year after first relapse) was associated with dismal outcome (pOS 2 ± 2%, n = 44 vs. 33 ± 9%, n = 29; p < 0.0001). A third complete remission (CR) is required for survival: 31% (n = 14) of patients with intensive treatment achieved a third CR with a pOS of 36 ± 13%, while 28 patients (62%) were non-responders (pOS 7 ± 5%). In conclusion, survival is poor but possible, particularly after a late second relapse and an intensive chemotherapy followed by HSCT. This analysis provides a baseline for future treatment planning.

16.
JCO Clin Cancer Inform ; 5: 1034-1043, 2021 09.
Article in English | MEDLINE | ID: mdl-34662145

ABSTRACT

The international pediatric oncology community has a long history of research collaboration. In the United States, the 2019 launch of the Children's Cancer Data Initiative puts the focus on developing a rich and robust data ecosystem for pediatric oncology. In this spirit, we present here our experience in constructing the Pediatric Cancer Data Commons (PCDC) to highlight the significance of this effort in fighting pediatric cancer and improving outcomes and to provide essential information to those creating resources in other disease areas. The University of Chicago's PCDC team has worked with the international research community since 2015 to build data commons for children's cancers. We identified six critical features of successful data commons design and implementation: (1) establish the need for a data commons, (2) develop and deploy the technical infrastructure, (3) establish and implement governance, (4) make the data commons platform easy and intuitive for researchers, (5) socialize the data commons and create working knowledge and expertise in the research community, and (6) plan for longevity and sustainability. Data commons are critical to conducting research on large patient cohorts that will ultimately lead to improved outcomes for children with cancer. There is value in connecting high-quality clinical and phenotype data to external sources of data such as genomic, proteomics, and imaging data. Next steps for the PCDC include creating an informed and invested data-sharing culture, developing sustainable methods of data collection and sharing, standardizing genetic biomarker reporting, incorporating radiologic and molecular analysis data, and building models for electronic patient consent. The methods and processes described here can be extended to any clinical area and provide a blueprint for others wishing to develop similar resources.


Subject(s)
Biomedical Research , Neoplasms , Child , Ecosystem , Genomics , Humans , Medical Oncology , Neoplasms/epidemiology , Neoplasms/therapy , United States
17.
Cancers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066095

ABSTRACT

Post-relapse therapy remains critical for survival in children with acute myeloid leukemia (AML). We evaluated survival, response and prognostic variables following relapse in independent cooperative group studies conducted by COG and the population-based AML-BFM study group. BFM included 197 patients who relapsed after closure of the last I-BFM relapse trial until 2017, while COG included 852 patients who relapsed on the last Phase 3 trials (AAML0531, AAML1031). Overall survival at 5 years (OS) was 42 ± 4% (BFM) and 35 ± 2% (COG). Initial high-risk features (BFM 32 ± 6%, COG 26 ± 4%) and short time to relapse (BFM 29 ± 4%, COG 25 ± 2%) predicted diminished survival. In the BFM dataset, there was no difference in OS for patients who had a complete remission with full hematopoietic recovery (CR) following post-relapse re-induction compared to those with partial neutrophil and platelet recovery (CRp and CRi) only (52 ± 7% vs. 63 ± 10%, p = 0.39). Among 90 patients alive at last follow-up, 87 had received a post-relapse hematopoietic stem cell transplant (HSCT). OS for patients with post-relapse HSCT was 54 ± 4%. In conclusion, initial high-risk features and early relapse remain prognostic. Response assessment with full hematopoietic recovery following initial relapse therapy does not predict survival. These data indicate the need for post-relapse risk stratification in future studies of relapse therapies.

18.
Hemasphere ; 4(1): e312, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32072137

ABSTRACT

Aberrant activation of key signaling-molecules is a hallmark of acute myeloid leukemia (AML) and may have prognostic and therapeutic implications. AML summarizes several disease entities with a variety of genetic subtypes. A comprehensive model spanning from signal activation patterns in major genetic subtypes of pediatric AML (pedAML) to outcome prediction and pre-clinical response to signaling inhibitors has not yet been provided. We established a high-throughput flow-cytometry based method to assess activation of hallmark phospho-proteins (phospho-flow) in 166 bone-marrow derived pedAML samples under basal and cytokine stimulated conditions. We correlated levels of activated phospho-proteins at diagnosis with relapse incidence in intermediate (IR) and high risk (HR) subtypes. In parallel, we screened a set of signaling inhibitors for their efficacy against primary AML blasts in a flow-cytometry based ex vivo cytotoxicity assay and validated the results in a murine xenograft model. Certain phospho-signal patterns differ between genetic subtypes of pedAML. Some are consistently seen through all AML subtypes such as pSTAT5. In IR/HR subtypes high levels of GM-CSF stimulated pSTAT5 and low levels of unstimulated pJNK correlated with increased relapse risk overall. Combination of GM-CSF/pSTAT5high and basal/pJNKlow separated three risk groups among IR/HR subtypes. Out of 10 tested signaling inhibitors, midostaurin most effectively affected AML blasts and simultaneously blocked phosphorylation of multiple proteins, including STAT5. In a mouse xenograft model of KMT2A-rearranged pedAML, midostaurin significantly prolonged disease latency. Our study demonstrates the applicability of phospho-flow for relapse-risk assessment in pedAML, whereas functional phenotype-driven ex vivo testing of signaling inhibitors may allow individualized therapy.

19.
Mol Cancer Res ; 18(10): 1603-1612, 2020 10.
Article in English | MEDLINE | ID: mdl-32641517

ABSTRACT

Bone marrow fibrosis (BMF) is a rare complication in acute leukemia. In pediatrics, it predominantly occurs in acute megakaryoblastic leukemia (AMKL) and especially in patients with trisomy 21, called myeloid leukemia in Down syndrome (ML-DS). Defects in mesenchymal stromal cells (MSC) and cytokines specifically released by the myeloid blasts are thought to be the main drivers of fibrosis in the bone marrow niche (BMN). To model the BMN of pediatric patients with AMKL in mice, we first established MSCs from pediatric patients with AMKL (n = 5) and ML-DS (n = 9). Healthy donor control MSCs (n = 6) were generated from unaffected children and adolescents ≤18 years of age. Steady-state analyses of the MSCs revealed that patient-derived MSCs exhibited decreased adipogenic differentiation potential and enrichment of proliferation-associated genes. Importantly, TGFB1 exposure in vitro promoted early profibrotic changes in all three MSC entities. To study BMF induction for longer periods of time, we created an in vivo humanized artificial BMN subcutaneously in immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice, using a mixture of MSCs, human umbilical vein endothelial cell, and Matrigel. Injection of AMKL blasts as producers of TGFB1 into this BMN after 8 weeks induced fibrosis grade I/II in a dose-dependent fashion over a time period of 4 weeks. Thus, our study developed a humanized mouse model that will be instrumental to specifically examine leukemogenesis and therapeutic targets for AMKL blasts in future. IMPLICATIONS: TGFB1 supports fibrosis induction in a pediatric AMKL model generated with patient-derived MSCs. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/10/1603/F1.large.jpg.


Subject(s)
Immunophenotyping/methods , Mesenchymal Stem Cells/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Disease Models, Animal , Fibrosis , Humans , Leukemia, Megakaryoblastic, Acute , Male , Mice
20.
J Oncol ; 2019: 1609128, 2019.
Article in English | MEDLINE | ID: mdl-31467532

ABSTRACT

Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29) or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence of WT1 mutation, NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.

SELECTION OF CITATIONS
SEARCH DETAIL