Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35395208

ABSTRACT

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Neurodevelopmental Disorders , Ubiquitination , F-Box-WD Repeat-Containing Protein 7/chemistry , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Germ Cells , Germ-Line Mutation , Humans , Neurodevelopmental Disorders/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Am J Hum Genet ; 108(7): 1330-1341, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34102099

ABSTRACT

Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.


Subject(s)
Adaptor Protein Complex 1/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Alleles , Animals , DNA Mutational Analysis , Female , HEK293 Cells , Humans , Male , Pedigree , Rats , Zebrafish/genetics
3.
Genet Med ; 25(12): 100947, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37534744

ABSTRACT

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Humans , Genetic Testing/methods , Genomics , Exome/genetics , North America
4.
Genet Med ; 23(3): 498-507, 2021 03.
Article in English | MEDLINE | ID: mdl-33144682

ABSTRACT

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Subject(s)
Exome , Undiagnosed Diseases , Exome/genetics , Genetic Testing , Humans , Phenotype , Translational Research, Biomedical , Exome Sequencing
5.
Am J Med Genet A ; 179(4): 570-578, 2019 04.
Article in English | MEDLINE | ID: mdl-30734472

ABSTRACT

DDX3X (Xp11.4) encodes a DEAD-box RNA helicase that escapes X chromosome inactivation. Pathogenic variants in DDX3X have been shown to cause X-linked intellectual disability (ID) (MRX102, MIM: 300958). The phenotypes associated with DDX3X variants are heterogeneous and include brain and behavioral abnormalities, microcephaly, hypotonia, and movement disorders and/or spasticity. The majority of DDX3X variants described are de novo mutations in females with ID. In contrast, most male DDX3X variants are inherited from an unaffected mother, with one documented exception being a recently identified de novo splice site variant. It has been suggested, therefore, that DDX3X exerts its effects through haploinsufficiency in females, and that affected males carry hypomorphic alleles that retain partial function. Given the lack of male de novo DDX3X variants, loss-of-function variants in this gene are suspected to be male lethal. Through whole-exome sequencing, we identified three unrelated males with hemizygous missense DDX3X variants and ID. All three variants were confirmed by Sanger sequencing, with two established as de novo. In silico analyses were supportive of pathogenicity. We report the male phenotypes and compare them to phenotypes observed in previously reported male and female patients. In conclusion, we propose that de novo DDX3X variants are not necessarily male lethal and should be considered as a cause of syndromic ID in both males and females.


Subject(s)
DEAD-box RNA Helicases/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation, Missense , Adolescent , Child , Female , Humans , Male , Phenotype , Sex Factors , Syndrome , Exome Sequencing
8.
J Mol Diagn ; 25(7): 524-531, 2023 07.
Article in English | MEDLINE | ID: mdl-37088140

ABSTRACT

Genome sequencing (GS) is a powerful clinical tool used for the comprehensive diagnosis of germline disorders. GS library preparation typically involves mechanical DNA fragmentation, end repair, and bead-based library size selection followed by adapter ligation, which can require a large amount of input genomic DNA. Tagmentation using bead-linked transposomes can simplify the library preparation process and reduce the DNA input requirement. Here we describe the clinical validation of tagmentation-based PCR-free GS as a clinical test for rare germline disorders. Compared with the Genome-in-a-Bottle Consortium benchmark variant sets, GS had a recall >99.7% and a precision of 99.8% for single nucleotide variants and small insertion-deletions. GS also exhibited 100% sensitivity for clinically reported sequence variants and the copy number variants examined. Furthermore, GS detected mitochondrial sequence variants above 5% heteroplasmy and showed reliable detection of disease-relevant repeat expansions and SMN1 homozygous loss. Our results indicate that while lowering DNA input requirements and reducing library preparation time, GS enables uniform coverage across the genome as well as robust detection of various types of genetic alterations. With the advantage of comprehensive profiling of multiple types of genetic alterations, GS is positioned as an ideal first-tier diagnostic test for germline disorders.


Subject(s)
DNA , Rare Diseases , Humans , Base Sequence , Chromosome Mapping , Sequence Analysis, DNA/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods
9.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 10.
Article in English | MEDLINE | ID: mdl-32483341

ABSTRACT

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.


Subject(s)
Craniofacial Abnormalities/genetics , DNA Helicases/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Adolescent , Adult , Catalytic Domain , Child , Child, Preschool , Craniofacial Abnormalities/pathology , DNA Helicases/chemistry , Developmental Disabilities/pathology , Female , Humans , Infant , Intellectual Disability/pathology , Male , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mutation , Phenotype , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL