Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
Phys Rev Lett ; 132(22): 224002, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877904

ABSTRACT

Charge separation behind moving water drops occurs in nature and technology. Yet, the physical mechanism has remained obscure, as charge deposition is energetically unfavorable. Here, we analyze how a part of the electric double layer charge remains on the dewetted surface. At the contact line, the chemical equilibrium of bound surface charge and diffuse charge in the liquid is influenced by the contact angle and fluid flow. We summarize the mechanism in an analytical model that compares well with experiments and simulations. It correctly predicts that charge separation increases with increasing contact angle and decreases with increasing velocity.

2.
Soft Matter ; 20(26): 5045-5052, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38639086

ABSTRACT

Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface. For this purpose, we position a metal electrode beneath the hydrophobic substrate to measure the capacitive current induced by the moving drop. Furthermore, we investigate drop-induced charging on different dielectric surfaces together with the surface neutralization processes. The surface neutralizes over a characteristic time, which is influenced by the substrate and the surrounding environment. We present an analytical model that describes the slide electrification using measurable parameters such as the surface charge density and its neutralization time. Understanding the model parameters and refining them will enable a targeted optimization of the efficiency in solid-liquid charge separation.

3.
Phys Rev Lett ; 131(22): 228201, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101382

ABSTRACT

Slide electrification-the spontaneous charge separation by sliding aqueous drops-can lead to an electrostatic potential in the order of 1 kV and change drop motion substantially. To find out how slide electrification influences the contact angles of moving drops, we analyzed the dynamic contact angles of aqueous drops sliding down tilted plates with insulated surfaces, grounded surfaces, and while grounding the drop. The observed decrease in dynamic contact angles at different salt concentrations is attributed to two effects: An electrocapillary reduction of contact angles caused by drop charging and a change in the free surface energy of the solid due to surface charging.

4.
Phys Rev Lett ; 129(26): 264501, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608199

ABSTRACT

Inducing transport in electrolyte-filled nanopores with dc fields has led to influential applications ranging from nanosensors to DNA sequencing. Here we use the Poisson-Nernst-Planck and Navier-Stokes equations to show that unbiased ac fields can induce comparable directional flows in gated conical nanopores. This flow exclusively occurs at intermediate driving frequencies and hinges on the resonance of two competing timescales, representing space charge development at the ends and in the interior of the pore. We summarize the physics of resonant nanopumping in an analytical model that reproduces the results of numerical simulations. Our findings provide a generic route toward real-time controllable flow patterns, which might find applications in controlling the translocation of small molecules or nanocolloids.


Subject(s)
Nanopores , Electrolytes
5.
J Phys Chem Lett ; 15(15): 4151-4157, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38597408

ABSTRACT

The ability to control the location of nanoscale objects in liquids is essential for fundamental and applied research from nanofluidics to molecular biology. To overcome their random Brownian motion, the electrostatic fluid trap creates local minima in potential energy by shaping electrostatic interactions with a tailored wall topography. However, this strategy is inherently static; once fabricated, the potential wells cannot be modulated. Here, we propose and experimentally demonstrate that such a trap can be controlled through a buried gate electrode. We measure changes in the average escape times of nanoparticles from the traps to quantify the induced modulations of 0.7 kBT in potential energy and 50 mV in surface potential. Finally, we summarize the mechanism in a parameter-free predictive model, including surface chemistry and electrostatic fringing, that reproduces the experimental results. Our findings open a route toward real-time controllable nanoparticle traps.

6.
J Phys Chem Lett ; 14(49): 11110-11116, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38052008

ABSTRACT

Water drops on insulating hydrophobic substrates can generate electric potentials of kilovolts upon sliding for a few centimeters. We show that the drop saturation voltage corresponds to an amplified value of the solid-liquid surface potential at the substrate. The amplification is given by the substrate geometry, the drop and substrate dielectric properties, and the Debye length within the liquid. Next to enabling an easy and low-cost way to measure surface- and zeta- potentials, the high drop voltages have implications for energy harvesting, droplet microfluidics, and electrostatic discharge protection.

SELECTION OF CITATIONS
SEARCH DETAIL