Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Hum Genet ; 109(1): 66-80, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995504

ABSTRACT

Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.


Subject(s)
Alternative Splicing , Cardiometabolic Risk Factors , Gene Expression Regulation , Quantitative Trait Loci , Quantitative Trait, Heritable , Subcutaneous Fat/metabolism , Binding Sites , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Computational Biology/methods , Exons , Finland , Genes, Reporter , Genetic Association Studies , Genetic Predisposition to Disease , Genetics, Population , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing , Humans , Liver X Receptors/genetics , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Molecular Sequence Annotation , Phenotype , Protein Isoforms/genetics , RNA Splice Sites , RNA-Binding Proteins
2.
Genet Epidemiol ; 47(1): 61-77, 2023 02.
Article in English | MEDLINE | ID: mdl-36125445

ABSTRACT

There is an increasing interest in using multiple types of omics features (e.g., DNA sequences, RNA expressions, methylation, protein expressions, and metabolic profiles) to study how the relationships between phenotypes and genotypes may be mediated by other omics markers. Genotypes and phenotypes are typically available for all subjects in genetic studies, but typically, some omics data will be missing for some subjects, due to limitations such as cost and sample quality. In this article, we propose a powerful approach for mediation analysis that accommodates missing data among multiple mediators and allows for various interaction effects. We formulate the relationships among genetic variants, other omics measurements, and phenotypes through linear regression models. We derive the joint likelihood for models with two mediators, accounting for arbitrary patterns of missing values. Utilizing computationally efficient and stable algorithms, we conduct maximum likelihood estimation. Our methods produce unbiased and statistically efficient estimators. We demonstrate the usefulness of our methods through simulation studies and an application to the Metabolic Syndrome in Men study.


Subject(s)
Mediation Analysis , Models, Genetic , Humans , Genotype , Computer Simulation , Likelihood Functions , Algorithms
3.
PLoS Genet ; 16(9): e1009019, 2020 09.
Article in English | MEDLINE | ID: mdl-32915782

ABSTRACT

Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.


Subject(s)
Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/metabolism , Alleles , Cadherins/genetics , Cadherins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Frequency/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Male , Metabolic Syndrome/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564431

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression , Obesity/genetics , Alleles , Body Mass Index , Finland , Genome-Wide Association Study , Humans , Male , Quantitative Trait Loci , Waist-Hip Ratio
5.
Hum Mol Genet ; 28(24): 4161-4172, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31691812

ABSTRACT

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio adjusted for body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified.


Subject(s)
Adipose Tissue/physiology , Body Fat Distribution , Genome-Wide Association Study/methods , Metabolic Syndrome/genetics , Quantitative Trait Loci , Adult , Bayes Theorem , Body Mass Index , Female , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide , Subcutaneous Fat/metabolism , Waist-Hip Ratio/methods
6.
PLoS Genet ; 14(4): e1007275, 2018 04.
Article in English | MEDLINE | ID: mdl-29621232

ABSTRACT

To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus.


Subject(s)
Blood Glucose/genetics , Diabetes Mellitus, Type 2/genetics , Health Surveys , China , Fasting , Female , Genome-Wide Association Study , Humans , Islets of Langerhans/metabolism , Male , Mutation, Missense , Nutrition Surveys , Quantitative Trait Loci
7.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29481666

ABSTRACT

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.


Subject(s)
Amino Acids/metabolism , Genome-Wide Association Study/methods , Finland , Gene Frequency/genetics , Genotype , Humans , Male , Middle Aged
8.
Am J Hum Genet ; 100(3): 428-443, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28257690

ABSTRACT

Subcutaneous adipose tissue stores excess lipids and maintains energy balance. We performed expression quantitative trait locus (eQTL) analyses by using abdominal subcutaneous adipose tissue of 770 extensively phenotyped participants of the METSIM study. We identified cis-eQTLs for 12,400 genes at a 1% false-discovery rate. Among an approximately 680 known genome-wide association study (GWAS) loci for cardio-metabolic traits, we identified 140 coincident cis-eQTLs at 109 GWAS loci, including 93 eQTLs not previously described. At 49 of these 140 eQTLs, gene expression was nominally associated (p < 0.05) with levels of the GWAS trait. The size of our dataset enabled identification of five loci associated (p < 5 × 10-8) with at least five genes located >5 Mb away. These trans-eQTL signals confirmed and extended the previously reported KLF14-mediated network to 55 target genes, validated the CIITA regulation of class II MHC genes, and identified ZNF800 as a candidate master regulator. Finally, we observed similar expression-clinical trait correlations of genes associated with GWAS loci in both humans and a panel of genetically diverse mice. These results provide candidate genes for further investigation of their potential roles in adipose biology and in regulating cardio-metabolic traits.


Subject(s)
Cardiovascular Diseases/genetics , Gene Expression Regulation , Metabolic Syndrome/genetics , Quantitative Trait Loci , Subcutaneous Fat/metabolism , Aged , Animals , Databases, Genetic , Gene Expression Profiling , Genome-Wide Association Study , Genotyping Techniques , Humans , Male , Mice , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Reproducibility of Results , Trans-Activators/genetics , Trans-Activators/metabolism
9.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961277

ABSTRACT

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

10.
J Pathol Inform ; 13: 1, 2022.
Article in English | MEDLINE | ID: mdl-35136669

ABSTRACT

Bioinformatics analysis is a key element in the development of in-house next-generation sequencing assays for tumor genetic profiling that can include both tumor DNA and RNA with comparisons to matched-normal DNA in select cases. Bioinformatics analysis encompasses a computationally heavy component that requires a high-performance computing component and an assay-dependent quality assessment, aggregation, and data cleaning component. Although there are free, open-source solutions and fee-for-use commercial services for the computationally heavy component, these solutions and services can lack the options commonly utilized in increasingly complex genomic assays. Additionally, the cost to purchase commercial solutions or implement and maintain open-source solutions can be out of reach for many small clinical laboratories. Here, we present Software for Clinical Health in Oncology for Omics Laboratories (SCHOOL), a collection of genomics analysis workflows that (i) can be easily installed on any platform; (ii) run on the cloud with a user-friendly interface; and (iii) include the detection of single nucleotide variants, insertions/deletions, copy number variants (CNVs), and translocations from RNA and DNA sequencing. These workflows contain elements for customization based on target panel and assay design, including somatic mutational analysis with a matched-normal, microsatellite stability analysis, and CNV analysis with a single nucleotide polymorphism backbone. All of the features of SCHOOL have been designed to run on any computer system, where software dependencies have been containerized. SCHOOL has been built into apps with workflows that can be run on a cloud platform such as DNANexus using their point-and-click graphical interface, which could be automated for high-throughput laboratories.

11.
Nat Genet ; 53(6): 840-860, 2021 06.
Article in English | MEDLINE | ID: mdl-34059833

ABSTRACT

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Subject(s)
Blood Glucose/genetics , Quantitative Trait, Heritable , White People/genetics , Alleles , Epigenesis, Genetic , Gene Expression Profiling , Genome, Human , Genome-Wide Association Study , Glycated Hemoglobin/metabolism , Humans , Multifactorial Inheritance/genetics , Physical Chromosome Mapping , Quantitative Trait Loci/genetics
12.
Nat Commun ; 9(1): 3472, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135520

ABSTRACT

In the original version of this Article, Supplementary Table 10 contained incorrect primer sequences for the mobility shift assay for SNP rs4776984. These errors have now been fixed and the corrected version of the Supplementary Information PDF is available to download from the HTML version of the Article.

13.
Nat Commun ; 9(1): 1512, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666371

ABSTRACT

Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.


Subject(s)
Adipocytes/metabolism , Adiposity/genetics , Chromosomes, Human/genetics , Genetic Predisposition to Disease , Obesity/genetics , Adipose Tissue/cytology , Aged , Body Mass Index , Cells, Cultured , Cohort Studies , Finland , Gene Expression Regulation/physiology , Gene Library , Gene Regulatory Networks/physiology , Genomics/methods , Humans , Male , Middle Aged , Obesity/metabolism , Phenotype , Polymorphism, Single Nucleotide , Primary Cell Culture , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL