Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cancer Res ; 78(15): 4253-4269, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29789416

ABSTRACT

The ability of disseminated cancer cells to evade the immune response is a critical step for efficient metastatic progression. Protection against an immune attack is often provided by the tumor microenvironment that suppresses and excludes cytotoxic CD8+ T cells. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive metastatic disease with unmet needs, yet the immunoprotective role of the metastatic tumor microenvironment in pancreatic cancer is not completely understood. In this study, we find that macrophage-derived granulin contributes to cytotoxic CD8+ T-cell exclusion in metastatic livers. Granulin expression by macrophages was induced in response to colony-stimulating factor 1. Genetic depletion of granulin reduced the formation of a fibrotic stroma, thereby allowing T-cell entry at the metastatic site. Although metastatic PDAC tumors are largely resistant to anti-PD-1 therapy, blockade of PD-1 in granulin-depleted tumors restored the antitumor immune defense and dramatically decreased metastatic tumor burden. These findings suggest that targeting granulin may serve as a potential therapeutic strategy to restore CD8+ T-cell infiltration in metastatic PDAC, thereby converting PDAC metastatic tumors, which are refractory to immune checkpoint inhibitors, into tumors that respond to immune checkpoint inhibition therapies.Significance: These findings uncover a mechanism by which metastatic PDAC tumors evade the immune response and provide the rationale for targeting granulin in combination with immune checkpoint inhibitors for the treatment of metastatic PDAC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4253/F1.large.jpg Cancer Res; 78(15); 4253-69. ©2018 AACR.


Subject(s)
Drug Resistance, Neoplasm/physiology , Granulins/metabolism , Macrophages/metabolism , Pancreatic Neoplasms/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Female , Macrophages/pathology , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment/physiology , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL