Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.298
Filter
Add more filters

Publication year range
1.
Cell ; 177(3): 572-586.e22, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955884

ABSTRACT

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.


Subject(s)
Adenocarcinoma/pathology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Differentiation , Epigenesis, Genetic , Gene Library , Humans , Mice , Mice, Knockout , Mice, SCID , Neoplastic Stem Cells/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Interleukin-10/antagonists & inhibitors , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Tumor Cells, Cultured
2.
Nature ; 620(7974): 557-561, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587300

ABSTRACT

Supercooled water droplets are widely used to study supercooled water1,2, ice nucleation3-5 and droplet freezing6-11. Their freezing in the atmosphere affects the dynamics and climate feedback of clouds12,13 and can accelerate cloud freezing through secondary ice production14-17. Droplet freezing occurs at several timescales and length scales14,18 and is sufficiently stochastic to make it unlikely that two frozen drops are identical. Here we use optical microscopy and X-ray laser diffraction to investigate the freezing of tens of thousands of water microdrops in vacuum after homogeneous ice nucleation around 234-235 K. On the basis of drop images, we developed a seven-stage model of freezing and used it to time the diffraction data. Diffraction from ice crystals showed that long-range crystalline order formed in less than 1 ms after freezing, whereas diffraction from the remaining liquid became similar to that from quasi-liquid layers on premelted ice19,20. The ice had a strained hexagonal crystal structure just after freezing, which is an early metastable state that probably precedes the formation of ice with stacking defects8,9,18. The techniques reported here could help determine the dynamics of freezing in other conditions, such as drop freezing in clouds, or help understand rapid solidification in other materials.

3.
Annu Rev Cell Dev Biol ; 31: 249-67, 2015.
Article in English | MEDLINE | ID: mdl-26566113

ABSTRACT

How a single cell gives rise to an entire organism is one of biology's greatest mysteries. Within this process, stem cells play a key role by serving as seed cells capable of both self-renewal to sustain themselves as well as differentiation to generate the full diversity of mature cells and functional tissues. Understanding how this balance between self-renewal and differentiation is achieved is crucial to defining not only the underpinnings of normal development but also how its subversion can lead to cancer. Musashi, a family of RNA binding proteins discovered originally in Drosophila and named after the iconic samurai, Miyamoto Musashi, has emerged as a key signal that confers and protects the stem cell state across organisms. Here we explore the role of this signal in stem cells and how its reactivation can be a critical element in oncogenesis. Relative to long-established developmental signals such as Wnt, Hedgehog, and Notch, our understanding of Musashi remains in its infancy; yet all evidence suggests that Musashi will emerge as an equally powerful paradigm for regulating development and cancer and may be destined to have a great impact on biology and medicine.


Subject(s)
Drosophila Proteins/metabolism , Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction/physiology , Stem Cells/metabolism , Animals , Carcinogenesis/metabolism , Drosophila/metabolism
4.
Nature ; 603(7901): 401-410, 2022 03.
Article in English | MEDLINE | ID: mdl-35296840

ABSTRACT

Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters-the 'land-to-ocean aquatic continuum' (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional 'long-range loop', which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two 'short-range loops' that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.


Subject(s)
Carbon Dioxide , Ecosystem , Oceans and Seas , Atmosphere , Carbon Cycle , Human Activities , Humans , Rivers
5.
Nature ; 601(7891): 45-48, 2022 01.
Article in English | MEDLINE | ID: mdl-34987215

ABSTRACT

Stellar ejecta gradually enrich the gas out of which subsequent stars form, making the least chemically enriched stellar systems direct fossils of structures formed in the early Universe1. Although a few hundred stars with metal content below 1,000th of the solar iron content are known in the Galaxy2-4, none of them inhabit globular clusters, some of the oldest known stellar structures. These show metal content of at least approximately 0.2% of the solar metallicity [Formula: see text]. This metallicity floor appears universal5,6, and it has been proposed that protogalaxies that merged into the galaxies we observe today were simply not massive enough to form clusters that survived to the present day7. Here we report observations of a stellar stream, C-19, whose metallicity is less than 0.05% of the solar metallicity [Formula: see text]. The low metallicity dispersion and the chemical abundances of the C-19 stars show that this stream is the tidal remnant of the most metal-poor globular cluster ever discovered, and is significantly below the purported metallicity floor: clusters with significantly lower metallicities than observed today existed in the past and contributed their stars to the Milky Way halo.

6.
Nature ; 601(7893): 360-365, 2022 01.
Article in English | MEDLINE | ID: mdl-35046599

ABSTRACT

Inorganic-organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties1. This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction2,3 and electron microdiffraction4-11. Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation12,13 and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach14, the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data15-17. We describe the ab initio structure solutions of mithrene (AgSePh)18-20, thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver-silver bonding network that is linked to its divergent optoelectronic properties20. We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure.


Subject(s)
Electrons , Silver , Crystallography, X-Ray , Lasers , X-Ray Diffraction
7.
EMBO J ; 40(20): e107795, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34487363

ABSTRACT

Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.


Subject(s)
CCCTC-Binding Factor/chemistry , DNA Repair , Melanoma/genetics , Protein Serine-Threonine Kinases/chemistry , Pyrimidine Dimers/radiation effects , Skin Neoplasms/genetics , Binding Sites , Binding, Competitive , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Line, Tumor , DNA Damage , Gene Expression , Humans , Melanoma/metabolism , Melanoma/pathology , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrimidine Dimers/biosynthesis , Pyrimidine Dimers/chemistry , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Ultraviolet Rays
8.
Ophthalmology ; 131(1): 98-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37696452

ABSTRACT

PURPOSE: To report 8-year outcomes from a randomized controlled trial (RCT) comparing bilateral lateral rectus muscle recession (BLRc) with unilateral recession-resection (R&R) for childhood intermittent exotropia (IXT). DESIGN: Eight-year follow-up of RCT cohort. PARTICIPANTS: Of 197 randomized participants, 123 agreed to continue follow-up after the 3-year outcome visit (baseline age, 3-< 11 years; basic-type IXT, 15-40 prism diopters [Δ] by prism and alternate cover test [PACT]; baseline stereoacuity, ≤ 400 arcsec; no prior surgery). METHODS: After the RCT primary outcome at 3 years, annual follow-up from 4 through 8 years with treatment at investigator discretion. MAIN OUTCOME MEASURES: Suboptimal surgical outcome by 8 years after randomization, defined as any of the following at any visit: exotropia of 10 Δ or more by simultaneous prism cover test (SPCT) at distance or near, constant esotropia (ET) of 6 Δ or more by SPCT at distance or near, loss of near stereoacuity by 0.6 log arcsec or more from baseline, or reoperation. Secondary outcomes included (1) reoperation by 8 years and (2) complete or near-complete resolution at 8 years, defined as exodeviation of less than 10 Δ by SPCT and PACT at distance and near and 10 Δ or more reduction from baseline by PACT at distance and near, ET of less than 6 Δ at distance and near, no decrease in stereoacuity by 0.6 log arcsec or more from baseline, and no reoperation or nonsurgical treatment for IXT. RESULTS: The Kaplan-Meier cumulative probability of suboptimal surgical outcome through 8 years was 68% (55 events among 101 at risk) for BLRc and 53% (42 events among 96 at risk) for R&R (difference, 15%; 95% confidence interval [CI], -2% to 32%; P = 0.08). Complete or near-complete resolution at 8 years occurred in 15% (7/46) for BLRc and 37% (16/43) for R&R (difference, -22%; 95% CI, -44% to -0.1%; P = 0.049). The cumulative probability of reoperation was 30% for BLRc and 11% for R&R (difference, 19%; 95% CI, 2%-36%; P = 0.049). CONCLUSIONS: Despite no significant difference for the primary outcome, the 95% CI did not exclude a moderate benefit of R&R, which together with secondary outcomes suggests that unilateral R&R followed by usual care may yield better long-term outcomes than BLRc followed by usual care for basic-type childhood IXT using these surgical doses. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Esotropia , Exotropia , Humans , Child , Exotropia/surgery , Follow-Up Studies , Oculomotor Muscles/surgery , Ophthalmologic Surgical Procedures , Visual Acuity , Chronic Disease , Esotropia/surgery , Treatment Outcome , Retrospective Studies , Vision, Binocular/physiology
9.
Org Biomol Chem ; 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39412680

ABSTRACT

Development of robust oligonucleotide-based probe technologies, capable of recognizing specific regions of double-stranded DNA (dsDNA) targets, continues to attract considerable attention due to the promise of tools for modulation of gene expression, diagnostic agents, and new modalities against genetic diseases. Our laboratory pursues the development of various strand-invading probes. These include Invader probes, i.e., double-stranded oligonucleotide probes with one or more +1 interstrand zipper arrangements of intercalator-functionalized nucleotides like 2'-O-(pyren-1-yl)methyl-RNA monomers, and chimeric Invader/γPNA probes, i.e., heteroduplex probes between individual Invader strands and complementary γPNA strands. Here we report on the biophysical properties and dsDNA-recognition characteristics of a new class of chimeric probes-chimeric Invader/LNA probes-which are comprised of densely modified Invader strands and fully modified complementary LNA strands. The chimeric Invader/LNA probes form labile and distorted heteroduplexes, due to an apparent incompatibility between intercalating pyrene moieties and LNA strands. In contrast, the individual Invader and LNA strands form very stable duplexes with complementary DNA, which provides the driving force for near-stoichiometric recognition of model double-stranded DNA targets with single base-pair accuracy. The distinctive properties of chimeric Invader/LNA probes unlock exciting possibilities in molecular biology, and diagnostic and therapeutic fields.

10.
Nature ; 563(7731): 421-425, 2018 11.
Article in English | MEDLINE | ID: mdl-30405241

ABSTRACT

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Subject(s)
Oxygen/metabolism , Photosynthesis , Water/chemistry , Water/metabolism , Calcium/metabolism , Crystallography, X-Ray , Cyanobacteria/chemistry , Lasers , Manganese/metabolism , Models, Molecular , Oxidation-Reduction , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Plastoquinone/metabolism
11.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911756

ABSTRACT

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ'17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air-sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air-sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ'17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


Subject(s)
Atmosphere/chemistry , Ecosystem , Geologic Sediments/chemistry , Oxygen Isotopes/analysis , Earth, Planet , Ecological and Environmental Phenomena , Ozone/chemistry
12.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753488

ABSTRACT

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Subject(s)
Chloride Channels/metabolism , Chlorides/metabolism , Rhodopsins, Microbial/metabolism , Cations, Monovalent/metabolism , Chloride Channels/isolation & purification , Chloride Channels/radiation effects , Chloride Channels/ultrastructure , Crystallography/methods , Electromagnetic Radiation , Lasers , Molecular Dynamics Simulation , Nocardioides , Protein Conformation, alpha-Helical/radiation effects , Protein Structure, Tertiary/radiation effects , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/radiation effects , Recombinant Proteins/ultrastructure , Retinaldehyde/metabolism , Retinaldehyde/radiation effects , Rhodopsins, Microbial/isolation & purification , Rhodopsins, Microbial/radiation effects , Rhodopsins, Microbial/ultrastructure , Water/metabolism
13.
Nano Lett ; 23(22): 10360-10366, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947380

ABSTRACT

We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted electric fields, associated with p-n junctions contained within the walls, can be fully rationalized through expected variations in wall resistivity alone. There is no need to invoke additional physics (carrier depletion zones and space-charge fields) normally associated with extrinsically doped semiconductor p-n junctions. Indeed, we argue that this should not even be expected, as inherent Fermi level differences between p and n regions, at the core of conventional p-n junction behavior, cannot occur in domain walls that are surrounded by a common matrix. This is important for domain-wall nanoelectronics, as such in-wall junctions will neither act as diodes nor facilitate transistors in the same way as extrinsic semiconducting systems do.

14.
J Am Chem Soc ; 145(41): 22305-22309, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37695261

ABSTRACT

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we detected a geminate photoproduct of the bCcO-CO complex, where CO is dissociated from the heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 iron, while the locations of the two metal centers and the conformation of Helix-X, housing the proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bCcO, allows for a clearer definition of the ligand dissociation trajectory as well as the associated protein dynamics.


Subject(s)
Copper , Electron Transport Complex IV , Cattle , Animals , Electron Transport Complex IV/chemistry , Oxidation-Reduction , Copper/chemistry , Ligands , Oxygen/chemistry , Crystallography, X-Ray , Iron/chemistry , Water/metabolism
15.
J Am Chem Soc ; 145(31): 17042-17055, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37524069

ABSTRACT

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

16.
Opt Lett ; 48(5): 1315-1318, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36857277

ABSTRACT

We report an all-Si microring (MRR) avalanche photodiode (APD) with an ultrahigh responsivity (R) of 65 A/W, dark current of 6.5 µA, and record gain-bandwidth product (GBP) of 798 GHz at -7.36 V. The mechanisms for the high responsivity have been modelled and investigated. Furthermore, open eye diagrams up to 20 Gb/s are supported at 1310 nm at -7.36 V. The device is the first, to the best of our knowledge, low cost all-Si APD that has potential to compete with current commercial Ge- and III-V-based photodetectors (PDs). This shows the potential to make the all-Si APD a standard "black-box" component in Si photonics CMOS foundry platform component libraries.

17.
Environ Sci Technol ; 57(1): 780-789, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36521075

ABSTRACT

Hypoxia and acidification are commonly coupled in eutrophic aquatic environments because aerobic respiration is usually dominant in bottom waters and can lower dissolved oxygen (DO) and pH simultaneously. However, the degree of coupling, which can be weakened by non-aerobic respiration and CaCO3 cycling, has not been adequately assessed. In this study, we applied a box model to 20 years of water quality monitoring data to explore the relationship between hypoxia and acidification along the mainstem of Chesapeake Bay. In the early summer, dissolved inorganic carbon (DIC) production in mid-bay bottom waters was dominated by aerobic respiration, contributing to DO and pH declines. In contrast, late-summer DIC production was higher than that expected from aerobic respiration, suggesting potential buffering processes, such as calcium carbonate dissolution, which would elevate pH in hypoxic waters. These findings are consistent with contrasting seasonal relationships between riverine nitrogen (N) loads and hypoxic and acidified volumes. The N loads were associated with increased hypoxic and acidified volumes in June, but only increased hypoxic volumes in August, when acidified volume declines instead. Our study reveals that the magnitude of this decoupling varies interannually with watershed nutrient inputs, which has implications for the management of co-stressors in estuarine systems.


Subject(s)
Oxygen , Water Quality , Humans , Oxygen/analysis , Hypoxia , Hydrogen-Ion Concentration
18.
Nature ; 546(7657): 259-264, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28514451

ABSTRACT

The human glucagon receptor, GCGR, belongs to the class B G-protein-coupled receptor family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both the extracellular domain and transmembrane domain in an inactive conformation. The two domains are connected by a 12-residue segment termed the stalk, which adopts a ß-strand conformation, instead of forming an α-helix as observed in the previously solved structure of the GCGR transmembrane domain. The first extracellular loop exhibits a ß-hairpin conformation and interacts with the stalk to form a compact ß-sheet structure. Hydrogen-deuterium exchange, disulfide crosslinking and molecular dynamics studies suggest that the stalk and the first extracellular loop have critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding of the signalling mechanisms of class B G-protein-coupled receptors.


Subject(s)
Receptors, Glucagon/chemistry , Receptors, Glucagon/classification , Allosteric Site/drug effects , Benzamides/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Cell Membrane/metabolism , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , Deuterium Exchange Measurement , Disulfides/chemistry , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Protein Domains , Protein Stability , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism
19.
Surg Endosc ; 37(5): 3455-3462, 2023 05.
Article in English | MEDLINE | ID: mdl-36550313

ABSTRACT

BACKGROUND: One-year device safety and clinical outcomes of ventral hernia repair with the GORE® SYNECOR Intraperitoneal Biomaterial, a hybrid composite mesh was evaluated. METHODS: This retrospective, multicenter, case review analyzed device/procedure endpoints and patient-reported outcomes in patients treated for hernia repair ≥ 1 year from study enrollment. RESULTS: Included were 459 patients (with 469 ventral hernias) with a mean age of 58 ± 15 years; 77.1% met Ventral Hernia Working Group 2 (VHWG2) classification. Mean hernia size was 18.9 cm2 and 57.3% of hernias were incisional. Laparoscopic or robotic approach was utilized in 95.4% of patients. Mesh location was intraperitoneal for 75.6% and bridging repair was performed in 57.3%. Procedure-related adverse events within 30-days occurred in 5.0% of patients and included surgical site infection (SSI), surgical site occurrence (SSO), ileus, readmission, and re-operation. Procedure-related SSI or SSO events were 3.8% through 12 months. SSO events requiring procedural intervention (SSOPI) were 2.6% through 24 months. Four patients (0.9%) had confirmed hernia recurrence through the study (the mean follow-up was 32-months, range 14-53 months). Subgroup comparisons were conducted for all type recurrence; only diabetes was found to be statistically significant (p = .0506). CONCLUSION: In this analysis, ventral hernia repair with hybrid, composite mesh results in successful outcomes in most patients. This study represents a heterogeneous patient population undergoing repair using various approaches, mesh fixation, and mesh placement locations. These data appear to confirm long-term acceptable safety and device performance with a low rate of recurrence in a predominantly VHWG2 population.


Subject(s)
Hernia, Ventral , Incisional Hernia , Laparoscopy , Humans , Adult , Middle Aged , Aged , Biocompatible Materials , Retrospective Studies , Surgical Mesh/adverse effects , Recurrence , Hernia, Ventral/surgery , Hernia, Ventral/etiology , Laparoscopy/methods , Herniorrhaphy/methods , Incisional Hernia/surgery
20.
Am J Respir Crit Care Med ; 206(8): 1019-1034, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35696338

ABSTRACT

Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated ß1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.


Subject(s)
Endogenous Retroviruses , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Antiviral Agents , Elafin/genetics , Elafin/metabolism , Elafin/pharmacology , Endogenous Retroviruses/metabolism , Familial Primary Pulmonary Hypertension/genetics , Humans , Hypertension, Pulmonary/genetics , Integrins/genetics , Integrins/metabolism , Leukocyte Elastase/metabolism , Mice , Neutrophils/metabolism , Proteomics , Vinculin/genetics , Vinculin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL