Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PeerJ ; 12: e17791, 2024.
Article in English | MEDLINE | ID: mdl-39071121

ABSTRACT

Knowledge on species composition is the first step necessary for the proper conservation and management of biological resources and ecologically relevant species. High species diversity and a lack of diagnostic characters for some groups can impose difficulties for taxonomic identification through traditional methodologies, and ichthyoplankton (fish larvae and eggs) are a good example of such a scenario. With more than 35.000 valid species of fishes worldwide and overall similar anatomies in early developmental stages in closely related groups, fish larvae are often hard to be identified at the species or even more encompassing taxonomic levels. To overcome this situation, molecular techniques have been applied, with different markers tested over the years. Cytochrome c oxidase I (COI) is the most commonly used marker and now has the broadest public reference libraries, providing consistent results for species identification in different metazoan studies. Here we sequenced the mitochondrial COI-5P fragment of 89 fish larvae collected in the Campos Basin, coastal southeastern Brazil, and compared these sequences with references deposited in public databases to obtain taxonomic identifications. Most specimens identified are species of the Blenniiformes, with Parablennius and Labrisomus the most frequently identified genera. Parablennius included two species (P. marmoreus and P. pilicornis), while Labrisomus included three species (L. cricota, L. conditus and L. nuchipinnis). Anatomy of these molecularly identified specimens were then analyzed with the intention of finding anatomical characters that might be diagnostically informative amongst the early development stage (pre-flexion) larvae. Ventral pigmentation patterns are proposed as useful markers to identify Labrisomus species. However, additional specimens are needed to confirm if the character holds stability through the geographic distribution of the species.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Fishes , Larva , Animals , DNA Barcoding, Taxonomic/methods , Larva/anatomy & histology , Larva/genetics , Larva/growth & development , Fishes/anatomy & histology , Fishes/genetics , Brazil , Electron Transport Complex IV/genetics , Phylogeny , Atlantic Ocean , Species Specificity
2.
Sci Rep ; 14(1): 10154, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698067

ABSTRACT

In the face of global ecosystem changes driven by anthropogenic activities, effective biomonitoring strategies are crucial for mitigating impacts on vulnerable aquatic habitats. Time series analysis underscores a great significance in understanding the dynamic nature of marine ecosystems, especially amidst climate change disrupting established seasonal patterns. Focusing on Norway's Oslo fjord, our research utilises eDNA-based monitoring for temporal analysis of aquatic biodiversity during a one year period, with bi-monthly sampling along a transect. To increase the robustness of the study, a taxonomic assignment comparing BLAST+ and SINTAX approaches was done. Utilising MiFish and Elas02 primer sets, our study detected 63 unique fish species, including several commercially important species. Our findings reveal a substantial increase in read abundance during specific migratory cycles, highlighting the efficacy of eDNA metabarcoding for fish composition characterization. Seasonal dynamics for certain species exhibit clear patterns, emphasising the method's utility in unravelling ecological complexities. eDNA metabarcoding emerges as a cost-effective tool with considerable potential for fish community monitoring for conservation purposes in dynamic marine environments like the Oslo fjord, contributing valuable insights for informed management strategies.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Estuaries , Fishes , Seasons , Animals , Fishes/genetics , Fishes/classification , Norway , DNA Barcoding, Taxonomic/methods , Ecosystem , Environmental Monitoring/methods , DNA, Environmental/genetics , DNA, Environmental/analysis
3.
Ecol Evol ; 14(1): e10817, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38187922

ABSTRACT

Carangid fishes are commercially important in fisheries and aquaculture. They are distributed worldwide in both tropical and subtropical marine ecosystems. Their role in food webs is often unclear since their diet cannot be easily identified by traditional gut content analysis. They are suspected to prey on pelagic and benthic species, with clupeiform fishes being important dietary items for some species, though it is unknown whether carangids share food resources or show trophic segregation. Here, we used metabarcoding to overcome traditional challenges of taxonomic approaches to analyze the diet of seven carangid species caught as bycatch in the Brazilian southwest Atlantic sardine fishery. Stomach contents were processed from the following species: Caranx crysos, Caranx latus, Chloroscombrus chrysurus, Hemicaranx amblyrhynchus, Oligoplites saliens, Selene setapinnis, and Trachinotus carolinus. Identified diets were dominated by teleost fishes. The C. latus diet was the most distinct among the seven species, preferentially consuming Engraulis anchoita, but H. amblyrhynchus, O. saliens, and S. setapinnis also showed a trend of predominantly consuming small pelagic fishes. Finally, we found evidence of inter-predation in carangids, especially strong between S. setapinnis and C. crysos, suggesting that consumption of early life stages may result in indirect competition through reduced recruitment in these fishes. These findings provide unprecedented insights into the biodiversity in marine ecosystems, especially the poorly known diet of carangid fishes.

4.
Sci Rep ; 9(1): 5956, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976082

ABSTRACT

The cephalopod fauna of the southwestern Atlantic is especially poorly-known because sampling is mostly limited to commercial net-fishing operations that are relatively inefficient at obtaining cephalopods associated with complex benthic substrates. Cephalopods have been identified in the diets of many large marine species but, as few hard structures survive digestion in most cases, the identification of ingested specimens to species level is often impossible. Samples can be identified by molecular techniques like barcoding and for cephalopods, mitochondrial 16S and COI genes have proven to be useful diagnostic markers for this purpose. The Amazon River estuary and continental shelf are known to encompass a range of different substrates with recent mapping highlighting the existence of an extensive reef system, a type of habitat known to support cephalopod diversity. The present study identified samples of the cephalopod fauna of this region obtained from the stomachs of red snappers, Lutjanus purpureus, a large, commercially-important fish harvested by fisheries using traps and hook-and-line gear that are capable of sampling habitats inaccessible to nets. A total of 98 samples were identified using molecular tools, revealing the presence of three squid species and eight MOTUs within the Octopodidae, representing five major clades. These include four known genera, Macrotritopus, Octopus, Scaeurgus and Amphioctopus, and one basal group distinct from all known octopodid genera described here as Lepidoctopus joaquini Haimovici and Sales, new genus and species. Molecular analysis of large predatory fish stomach contents was found to be an incredibly effective extended sampling method for biodiversity surveys where direct sampling is very difficult.


Subject(s)
Data Collection/methods , Gastrointestinal Contents/chemistry , Models, Biological , Octopodiformes/classification , Octopodiformes/genetics , Phylogeny , Animals , Biodiversity , Ecosystem
5.
Biol Open ; 8(5)2019 May 09.
Article in English | MEDLINE | ID: mdl-31036749

ABSTRACT

Crenicichla (Cichliformes, Cichlidae) present a highly conserved diploid number 2n=48 with fundamental numbers varying between 52 and 62. We analyzed four species in order to investigate the role of repetitive DNA in chromosome evolution in the genus. Crenicichla johanna, Crenicichla cf. saxatilis and Crenicichla cf. regani have 2n=48 (8 m/sm and 40st/a) and FN=56, while Crenicichla sp. 'Xingu I' has 2n=48 (48 st/a) and FN=48. Different patterns of constitutive heterochromatin distribution were observed including pericentric, interstitial and whole arm C bands. A single chromosome bears 18S rDNA clusters in most species, except C. johanna, where population variation exists in terms of the quantity and distribution of clusters and their association with interstitial telomeric sequences. All species showed hybridization of 5S rDNA sequences in an interstitial region on an acrocentric chromosome pair. The karyotypic differences and maintenance of the diploid number supports chromosome evolution mediated by inversions in Crenicichla The telomeric and 18S rDNA sequence association in various chromosomes of C. johanna are proposed to represent hotspots for breakage, favoring intra-chromosomal rearrangements. The results suggest that repetitive sequences can contribute to microstructural cytogenetic diversity in Crenicichla.

6.
Zebrafish ; 14(3): 244-250, 2017 06.
Article in English | MEDLINE | ID: mdl-28437173

ABSTRACT

Various species and lineages that until recently were identified as Microsternarchus bilineatus (Hypopomidae, Gymnotiformes) have a widespread distribution in the Amazon and Orinoco River basins and across the Guiana shield. Recent molecular studies show five distinct lineages for Microsternarchus from different localities. These results suggest that this previously monotypic genus actually consists of more than one species. Here, we describe the karyotype of M. aff. bilineatus from the Cururutuia River (Bragança, Pará, Brazil). The diploid number of 48 chromosomes (14 meta-submetacentric/34 subtelo-acrocentric) is found for males and females, with an XX/XY sex chromosome system. The nucleolar organizer region is found in the short arm of pair 9. Constitutive heterochromatin occurs in the pericentromeric region of all chromosomes, in the distal region of 3p, 5p, 7p, 8q, 9q, 16q, and Xq, in the interstitial region in 2p, 10q, 11q, and 12q and all along 4p, and in a large block of the Y chromosome. These results indicate extensive karyotype divergence between this population and samples from Igarapé Tarumã Grande (Negro River, Amazonas, Brazil) studied by other researchers. Moreover, despite the diversity of sex chromosome systems found in Gymnotiformes, the XX/XY sex chromosome system of M. aff. bilineatus is the first case of Y chromosome degeneration in this order. The present data are valuable to help understand karyotype evolution in Hypopomidae.


Subject(s)
Biological Evolution , Gymnotiformes/genetics , Y Chromosome/metabolism , Animals , Female , Karyotype , Karyotyping/methods , Karyotyping/veterinary , Male , Phylogeny
7.
Zebrafish ; 13(3): 209-16, 2016 06.
Article in English | MEDLINE | ID: mdl-26983010

ABSTRACT

The diversity of Hypancistrus species in the Xingu River is remarkable and the variation in color morphs represents a real challenge to taxonomists to delimit species boundaries. One of the most recognizable Hypancistrus complexes is the worm-lined species, known in the aquarium trade as King Tiger Plec in English, Hypancistrus "pão" in Portuguese or under the L-numbers L066 and L333 that represent two melanic pigment pattern phenotypes. To assess the identity of these two phenotypes, we described their karyotypes and sequenced part of the mitochondrial cytochrome oxidase I gene (DNA barcode). These fishes have 52 chromosomes (40 meta-submetacentric and 12 subtelo-acrocentric) and a strong heteromorphism in chromosome pair 21 was observed, which does not correlate with the two phenotypes or sex. DNA barcodes separated the samples analyzed from Hypancistrus zebra and other publicly available sequences of Loricariidae showing no divergence between the two phenotypes. The data set indicates that worm-lined Hypancistrus from the Xingu form a single species with clear chromosomal and melanic pigment pattern polymorphisms.


Subject(s)
Catfishes/genetics , DNA, Mitochondrial/genetics , Animals , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Pigmentation , Polymorphism, Genetic , Species Specificity
8.
Zebrafish ; 12(6): 440-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25695141

ABSTRACT

The electric eel, Electrophorus electricus, the only species of its genus, has a wide distribution in the Amazon and Orinoco drainages. There is little previous information regarding the population variation in E. electricus, with only basic karyotype data from two populations (Amazon and Araguaia Rivers). Karyotypic description and analysis of CO1 barcode sequences were performed for E. electricus from three localities (Caripetuba, Irituia, and Maicuru Rivers). All samples share the 2n=52 (42 m-sm [meta-submetacentric] +10 st-a [subtelo-acrocentric]) with previously studied material. However, the Maicuru River samples differ from the other populations, as they have B chromosomes. The distribution of noncentromeric constitutive heterochromatin between samples is relatively divergent. All samples analyzed present the Nucleolar Organizer Region (NOR) located in a single chromosome pair. In the samples from Caripetuba, NORs were colocalized with a heterochromatin block, whereas the NOR was flanked by heterochromatin in Maicuru River samples and pericentromeric heterochromatin adjacent NOR was found in Irituia River samples. Alignment of CO1 barcode sequences indicated no significant differentiation between the samples analyzed. Results suggest that karyotypic differences between samples from the Caripetuba, Irituia, and Amazon Rivers represent chromosome polymorphisms. However, differences between the samples from the Maicuru and Araguaia Rivers and the remaining populations could represent interpopulation differentiation, which has not had time to accrue divergence at the CO1 gene level.


Subject(s)
Animal Distribution , Electrophorus/genetics , Karyotype , Animals , Brazil , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Electrophorus/physiology , Genetic Variation , Nucleolus Organizer Region
SELECTION OF CITATIONS
SEARCH DETAIL