ABSTRACT
In our experiment, a trace amount of an organic molecule (M = 1H-phenalen-1-one, 9-fluorenone, pyridine, or acridine) was seeded into a gas mix consisting of 3% O2 with a rare gas buffer (He or Ar) and then supersonically expanded. We excited the resulting molecular beam with ultraviolet light at either 355 nm (1H-phenalen-1-one, 9-fluorenone, or acridine) or 266 nm (pyridine) and used resonance enhanced multiphoton ionization (REMPI) spectroscopy to probe for the formation of O2 in the a-1Δg state, 1O2. For all systems, the REMPI spectra demonstrate that ultraviolet excitation results in the formation of 1O2 and the oxygen product is confirmed to be in the ground vibrational state and with an effective rotational temperature below 80 K. We then recorded the velocity map ion image of the 1O2 product. From the ion images, we determined the center-of-mass translational energy distribution, P(ET), assuming photodissociation of a bimolecular M-O2 complex. We also report results from electronic structure calculations that allow for a determination of the M-O2 ground state binding energy. We use the complex binding energy, the energy to form 1O2, and the adiabatic triplet energy for each organic molecule to determine the available energy following photodissociation. For dissociation of a bimolecular complex, this available energy may be partitioned into either center-of-mass recoil or internal degrees of freedom of the organic moiety. We use the available energy to generate a Prior distribution, which predicts statistical energy partitioning during dissociation. For low available energies, less than 0.2 eV, we find that the statistical prediction is in reasonable agreement with the experimental observations. However, at higher available energies, the experimental distribution is biased to lower center-of-mass kinetic energies compared with the statistical prediction, which suggests the complex undergoes vibrational predissociation.
ABSTRACT
We report results from experiments with the quinoline-O2 complex, which was photodissociated using light near 312 nm. Photodissociation resulted in formation of the lowest excited state of oxygen, O2 a 1Δg, which we detected using resonance enhanced multiphoton ionization and velocity map ion imaging. The O2+ ion image allowed for a determination of the center-of-mass translational energy distribution, P(ET), following complex dissociation. We also report results of electronic structure calculations for the quinoline singlet ground state and lowest energy triplet state. From the CCSD/aug-cc-pVDZ//(U)MP2/cc-pVDZ calculations, we determined the lowest energy triplet state to have ππ* electronic character and to be 2.69 eV above the ground state. We also used electronic structure calculations to determine the geometry and binding energy for several quinoline-O2 complexes. The calculations indicated that the most strongly bound complex has a well depth of about 0.11 eV and places the O2 moiety above and approximately parallel to the quinoline ring system. By comparing the experimental P(ET) with the energy for the singlet ground state and the lowest energy triplet state, we concluded that the quinoline product was formed in the lowest energy triplet state. Finally, we found the experimental P(ET) to be in agreement with a Prior translational energy distribution, which suggests a statistical dissociation for the complex.
ABSTRACT
We report the experimental resonance enhanced multiphoton ionization spectrum of isoquinoline between 315 and 310 nm, along with correlated electronic structure calculations on the ground and excited states of this species. This spectral region spans the origin transitions to a π-π* excited state, which previous work has suggested to be vibronically coupled with a lower lying singlet n-π* state. Our computational results corroborate previous density functional theory calculations that predict the vertical excitation energy for the n-π* state to be higher than the π-π* state; however, we find an increase in the C-N-C angle brings the n-π* state below the energy of the π-π* state. The calculations find two out-of-plane vibrational modes of the n-π* state, which may be brought into near resonance with the π-π* state as the C-N-C bond angle increases. Therefore, the C-N-C bond angle may be important in activating vibronic coupling between the states. We fit the experimental rotational contour with a genetic algorithm to determine the excited state rotational constants and orientation of the transition dipole moment. The fits show a mostly in-plane polarized transition, and the projection of the transition dipole moment in the a-b plane is about 84° away from the a axis. These results are consistent with the prediction of our electronic structure calculations for the transition dipole moment of the π-π* excited state.