Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Lancet Oncol ; 23(9): 1189-1200, 2022 09.
Article in English | MEDLINE | ID: mdl-35952709

ABSTRACT

BACKGROUND: TGF-ß is an immunosuppressive cytokine that is upregulated in colorectal cancer. TGF-ß blockade improved response to chemoradiotherapy in preclinical models of colorectal adenocarcinoma. We aimed to test the hypothesis that adding the TGF-ß type I receptor kinase inhibitor galunisertib to neoadjuvant chemoradiotherapy would improve pathological complete response rates in patients with locally advanced rectal cancer. METHODS: This was an investigator-initiated, single-arm, phase 2 study done in two medical centres in Portland (OR, USA). Eligible patients had previously untreated, locally advanced, rectal adenocarcinoma, stage IIA-IIIC or IV as per the American Joint Committee on Cancer; Eastern Cooperative Oncology Group status 0-2; and were aged 18 years or older. Participants completed two 14-day courses of oral galunisertib 150 mg twice daily, before and during fluorouracil-based chemoradiotherapy (intravenous fluorouracil 225 mg/m2 over 24 h daily 7 days per week during radiotherapy or oral capecitabine 825 mg/m2 twice per day 5 days per week during radiotherapy; radiotherapy consisted of 50·4-54·0 Gy in 28-30 fractions). 5-9 weeks later, patients underwent response assessment. Patients with a complete response could opt for non-operative management and proceed to modified FOLFOX6 (intravenous leucovorin 400 mg/m2 on day 1, intravenous fluorouracil 400 mg/m2 on day 1 then 2400 mg/m2 over 46 h, and intravenous oxaliplatin 85 mg/m2 on day 1 delivered every 2 weeks for eight cycles) or CAPEOX (intravenous oxaliplatin 130 mg/m2 on day 1 and oral capecitabine 1000 mg/m2 twice daily for 14 days every 3 weeks for four cycles). Patients with less than complete response underwent surgical resection. The primary endpoint was complete response rate, which was a composite of pathological complete response in patients who proceeded to surgery, or clinical complete response maintained at 1 year after last therapy in patients with non-operative management. Safety was a coprimary endpoint. Both endpoints were assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02688712, and is active but not recruiting. FINDINGS: Between Oct 19, 2016, and Aug 31, 2020, 38 participants were enrolled. 25 (71%) of the 35 patients who completed chemoradiotherapy proceeded to total mesorectal excision surgery, five (20%) of whom had pathological complete responses. Ten (29%) patients had non-operative management, three (30%) of whom ultimately chose to have total mesorectal excision. Two (67%) of those three patients had pathological complete responses. Of the remaining seven patients in the non-operative management group, five (71%) had clinical complete responses at 1 year after their last modified FOLFOX6 infusion. In total, 12 (32% [one-sided 95% CI ≥19%]) of 38 patients had a complete response. Common grade 3 adverse events during treatment included diarrhoea in six (16%) of 38 patients, and haematological toxicity in seven (18%) patients. Two (5%) patients had grade 4 adverse events, one related to chemoradiotherapy-induced diarrhoea and dehydration, and the other an intraoperative ischaemic event. No treatment-related deaths occurred. INTERPRETATION: The addition of galunisertib to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer improved the complete response rate to 32%, was well tolerated, and warrants further assessment in randomised trials. FUNDING: Eli Lilly via ExIST program, The Providence Foundation.


Subject(s)
Adenocarcinoma , Neoplasms, Second Primary , Rectal Neoplasms , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Capecitabine , Chemoradiotherapy/adverse effects , Diarrhea/etiology , Fluorouracil , Humans , Neoadjuvant Therapy/adverse effects , Neoplasm Staging , Neoplasms, Second Primary/pathology , Oxaliplatin , Pyrazoles , Quinolines , Rectal Neoplasms/drug therapy , Rectal Neoplasms/pathology , Transforming Growth Factor beta
2.
Analyst ; 147(19): 4275-4284, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35997223

ABSTRACT

Accurate quantitation of antibodies is critical for development of monoclonal antibody therapeutics (mAbs). Therapeutic drug monitoring has been applied to measure levels of mAbs in clinics for dose adjustment for autoimmune disease. Trough levels of mAbs can be a biomarker for cancer immunotherapy. Thus, the deployment of a rapid and universal platform for mAb monitoring may benefit processes ranging from drug development to clinical practice for a wide spectrum of diseases. However, mAb monitoring often requires development and conduct of an individual ligand binding assay such as ELISA, which is impractical to scale. We streamlined quantitation of antibody therapeutics by a nano-surface and molecular-orientation limited (nSMOL) proteolysis assay using LC-MS with a universal reference antibody (refmAb-Q), for accurate multiplexed quantitation of unique signature peptides derived from mAbs. This innovative refmAb-Q nSMOL platform may provide a practical solution for quantitating an ever-increasing number of mAbs from developmental to clinical use settings.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Antibodies, Monoclonal/therapeutic use , Chromatography, Liquid , Ligands , Peptides
3.
Immunol Invest ; 51(8): 2159-2175, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36301695

ABSTRACT

While immune checkpoint blockade has revolutionized cancer treatment, unfortunately most patients do not benefit from this treatment. Many pharmacodynamic (PD) studies have revealed essential requirements for successful cancer immunotherapy that may provide insight into how we can improve these agents. Despite enormous efforts focused on interrogating the immune system using different biospecimens (e.g. blood, primary tumor, metastatic tumor, microbiome samples), a variety of technologies (e.g. flow cytometry, bulk and single-cell RNA-sequencing, immunohistochemistry), and wide-ranging disciplines (e.g. pathology, genomics, bioinformatics, immunology, cancer biology, metabolomics, bacteriology), discovery of consistent biomarkers of response have remained elusive. Pharmacokinetics (PK) studies, however, not only provide critical information regarding safe dosing but may also reveal useful biomarkers. For example, recent studies found that trough levels of therapeutic monoclonal antibodies (mAbs) or clearance (CL) of them were associated with clinical outcome, which suggests that trough levels of mAbs may represent a new class of on-treatment cancer immunotherapy biomarker. In this review, we summarize the potential utility of trough levels of mAbs, the mechanism of varying PK, consideration for therapeutic drug monitoring, and assay attributes that will facilitate wider utilization of PK information in conjunction with PD assessments.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy , Antibodies, Monoclonal/therapeutic use
4.
Curr Oncol Rep ; 24(7): 951-960, 2022 07.
Article in English | MEDLINE | ID: mdl-35352295

ABSTRACT

PURPOSE OF REVIEW: Despite the efficacy of immune checkpoint blockade (ICB) immunotherapy, most cancer patients still develop progressive disease necessitating additional treatment options. One approach is ligation of the OX40 (CD134) costimulatory receptor which promotes T cell activation, effector function, and the generation of long-lived memory cells. RECENT FINDINGS: Numerous preclinical studies have demonstrated that OX40 agonists alone or in combination with ICB (e.g., anti-PD-1, anti-PD-L1, and anti-CTLA-4) augment anti-tumor immunity. In this review, we discuss the impact of OX40 agonists on T cell function and the therapeutic potential of OX40 agonists alone or in conjunction with ICB for patients with advanced malignancies.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/therapy
5.
J Immunol ; 205(7): 1857-1866, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32848035

ABSTRACT

CD8+ T cells are critical mediators of adaptive immunity, and enhancing their function can promote robust responses against invading pathogens and neoplastic cells. In addition to TCR stimulation, the provision of costimulation through ligation of TNFR family members, such as OX40 (CD134), provides essential signals driving T cell differentiation, survival, and memory in part through enhanced IL-2/IL-2R signaling. Interestingly, TCR stimulation in the presence of IL-2 upregulates intracellular expression of the ß-galactoside binding protein, Galectin-3 (Gal-3). Gal-3 has been shown to regulate Th1/Th2 polarization of CD4+ T cells; however, the extent to which Gal-3 regulates the OX40/IL-2 signaling axis and CD8+ T cell proliferation, effector function, and/or survival is unknown. In this study, we demonstrate that murine Gal-3-deficient CD8+ T cells exhibited no defects in early (36 h) activation or proliferation following TCR stimulation. In contrast, Gal-3-/- CD8+ T cells exhibited decreased survival and a reduced capacity to develop into memory cells following stimulation with cognate Ag plus agonist anti-OX40 mAb or IL-2 in vivo. Decreased survival of Gal-3-/- T cells was associated with increased apoptosis and occurred in a cell-intrinsic manner. Together, these data implicate intracellular Gal-3 as a critical mediator of OX40-mediated CD8+ T cell survival and memory formation following Ag exposure.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Galectin 3/metabolism , Receptors, OX40/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Galectin 3/genetics , Immunologic Memory , Interleukin-2/metabolism , Intracellular Space/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-2/metabolism , Receptors, OX40/genetics , Signal Transduction
6.
Breast Cancer Res ; 23(1): 2, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413574

ABSTRACT

BACKGROUND: The H&E stromal tumor-infiltrating lymphocyte (sTIL) score and programmed death ligand 1 (PD-L1) SP142 immunohistochemistry assay are prognostic and predictive in early-stage breast cancer, but are operator-dependent and may have insufficient precision to characterize dynamic changes in sTILs/PD-L1 in the context of clinical research. We illustrate how multiplex immunofluorescence (mIF) combined with statistical modeling can be used to precisely estimate dynamic changes in sTIL score, PD-L1 expression, and other immune variables from a single paraffin-embedded slide, thus enabling comprehensive characterization of activity of novel immunotherapy agents. METHODS: Serial tissue was obtained from a recent clinical trial evaluating loco-regional cytokine delivery as a strategy to promote immune cell infiltration and activation in breast tumors. Pre-treatment biopsies and post-treatment tumor resections were analyzed by mIF (PerkinElmer Vectra) using an antibody panel that characterized tumor cells (cytokeratin-positive), immune cells (CD3, CD8, CD163, FoxP3), and PD-L1 expression. mIF estimates of sTIL score and PD-L1 expression were compared to the H&E/SP142 clinical assays. Hierarchical linear modeling was utilized to compare pre- and post-treatment immune cell expression, account for correlation of time-dependent measurement, variation across high-powered magnification views within each subject, and variation between subjects. Simulation methods (Monte Carlo, bootstrapping) were used to evaluate the impact of model and tissue sample size on statistical power. RESULTS: mIF estimates of sTIL and PD-L1 expression were strongly correlated with their respective clinical assays (p < .001). Hierarchical linear modeling resulted in more precise estimates of treatment-related increases in sTIL, PD-L1, and other metrics such as CD8+ tumor nest infiltration. Statistical precision was dependent on adequate tissue sampling, with at least 15 high-powered fields recommended per specimen. Compared to conventional t-testing of means, hierarchical linear modeling was associated with substantial reductions in enrollment size required (n = 25➔n = 13) to detect the observed increases in sTIL/PD-L1. CONCLUSION: mIF is useful for quantifying treatment-related dynamic changes in sTILs/PD-L1 and is concordant with clinical assays, but with greater precision. Hierarchical linear modeling can mitigate the effects of intratumoral heterogeneity on immune cell count estimations, allowing for more efficient detection of treatment-related pharmocodynamic effects in the context of clinical trials. TRIAL REGISTRATION: NCT02950259 .


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , B7-H1 Antigen/genetics , Data Analysis , Female , Fluorescent Antibody Technique/methods , Gene Expression , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/pathology , Neoplasm Grading , Neoplasm Staging , Prognosis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
7.
Cytometry A ; 95(2): 183-191, 2019 02.
Article in English | MEDLINE | ID: mdl-30570217

ABSTRACT

Automated reagent preparation, sample processing, and data acquisition have increased the rate at which flow cytometry data can be generated. Furthermore, advances in technology and flow cytometry instrumentation continually increase the complexity and dimensionality of this data. Together, this leads to increased pressure on manual data analysis, which has inherent limitations including subjectivity of the analyst and the length of time needed for data processing. These issues can create bottlenecks in the data processing workflow and potentially compromise data quality. To address these issues, as well as the challenges associated with manual gating in a high-volume human immune profiling laboratory, we sought to implement an automated analysis pipeline. In this report, we discuss considerations for selecting an automated analysis method, the process of implementing an automated pipeline, and detail our successful incorporation of an automated gating strategy with flowDensity into our analysis workflow. This validated pipeline augments our laboratory's ability to provide rapid high-throughput immune profiling for patients participating in cancer immunotherapy clinical trials. © International Society for Advancement of Cytometry.


Subject(s)
Automation, Laboratory/methods , Flow Cytometry/methods , Data Interpretation, Statistical , Humans
8.
Adv Exp Med Biol ; 1210: 121-147, 2019.
Article in English | MEDLINE | ID: mdl-31900908

ABSTRACT

Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.


Subject(s)
Immunotherapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Tumor Microenvironment/immunology , Humans , Male
9.
Proc Natl Acad Sci U S A ; 113(3): E319-27, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26729864

ABSTRACT

Immunotherapy is gathering momentum as a primary therapy for cancer patients. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that dual aOX40 (anti-CD134)/aCTLA-4 (anti-cytotoxic T-lymphocyte-associated protein 4) immunotherapy generated a potent antigen-specific CD8 T-cell response, enhancing expansion, effector function, and memory T-cell persistence. Importantly, OX40 and CTLA-4 expression on CD8 T cells was critical for promoting their maximal expansion following combination therapy. Animals treated with combination therapy and vaccination using anti-DEC-205 (dendritic and epithelial cells, 205 kDa)-HER2 (human epidermal growth factor receptor 2) had significantly improved survival in a mammary carcinoma model. Vaccination with combination therapy uniquely restricted Th2-cytokine production by CD4 cells, relative to combination therapy alone, and enhanced IFNγ production by CD8 and CD4 cells. We observed an increase in MIP-1α (macrophage inflammatory protein-1α)/CCL3 [chemokine (C-C motif) ligand 3], MIP-1ß/CCL4, RANTES (regulated on activation, normal T-cell expressed and excreted)/CCL5, and GM-CSF production by CD8 and CD4 T cells following treatment. Furthermore, this therapy was associated with extensive tumor destruction and T-cell infiltration into the tumor. Notably, in a spontaneous model of prostate adenocarcinoma, vaccination with combination therapy reversed anergy and enhanced the expansion and function of CD8 T cells recognizing a tumor-associated antigen. Collectively, these data demonstrate that the addition of a vaccine with combined aOX40/aCTLA-4 immunotherapy augmented antitumor CD8 T-cell function while limiting Th2 polarization in CD4 cells and improved overall survival.


Subject(s)
CTLA-4 Antigen/immunology , Clonal Anergy/immunology , Neoplasms/immunology , Neoplasms/therapy , Receptor, ErbB-2/immunology , Receptors, OX40/agonists , Vaccination , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cell Polarity , Cell Proliferation , Combined Modality Therapy , Female , Immunologic Memory , Immunotherapy , Male , Mammary Neoplasms, Animal/immunology , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/therapy , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Receptors, OX40/metabolism , Survival Analysis , Th2 Cells/cytology
10.
Lancet Oncol ; 19(5): 694-704, 2018 05.
Article in English | MEDLINE | ID: mdl-29628312

ABSTRACT

BACKGROUND: Immunotherapy with PD-1 or PD-L1 blockade fails to induce a response in about 80% of patients with unselected non-small cell lung cancer (NSCLC), and many of those who do initially respond then develop resistance to treatment. Agonists that target the shared interleukin-2 (IL-2) and IL-15Rßγ pathway have induced complete and durable responses in some cancers, but no studies have been done to assess the safety or efficacy of these agonists in combination with anti-PD-1 immunotherapy. We aimed to define the safety, tolerability, and activity of this drug combination in patients with NSCLC. METHODS: In this non-randomised, open-label, phase 1b trial, we enrolled patients (aged ≥18 years) with previously treated histologically or cytologically confirmed stage IIIB or IV NSCLC from three academic hospitals in the USA. Key eligibility criteria included measurable disease, eligibility to receive anti-PD-1 immunotherapy, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received the anti-PD-1 monoclonal antibody nivolumab intravenously at 3 mg/kg (then 240 mg when US Food and Drug Administration [FDA]-approved dosing changed) every 14 days (either as new treatment or continued treatment at the time of disease progression) and the IL-15 superagonist ALT-803 subcutaneously once per week on weeks 1-5 of four 6-week cycles for 6 months. ALT-803 was administered at one of four escalating dose concentrations: 6, 10, 15, or 20 µg/kg. The primary endpoint was to define safety and tolerability and to establish a recommended phase 2 dose of ALT-803 in combination with nivolumab. Analyses were per-protocol and included any patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, number NCT02523469; phase 2 enrolment of patients is ongoing. FINDINGS: Between Jan 18, 2016, and June 28, 2017, 23 patients were enrolled and 21 were treated at four dose levels of ALT-803 in combination with nivolumab. Two patients did not receive treatment because of the development of inter-current illness during enrolment, one patient due to leucopenia and one patient due to pulmonary dysfunction. No dose-limiting toxicities were recorded and the maximum tolerated dose was not reached. The most common adverse events were injection-site reactions (in 19 [90%] of 21 patients) and flu-like symptoms (15 [71%]). The most common grade 3 adverse events, occurring in two patients each, were lymphocytopenia and fatigue. A grade 3 myocardial infarction occurred in one patient. No grade 4 or 5 adverse events were recorded. The recommended phase 2 dose of ALT-803 is 20 µg/kg given once per week subcutaneously in combination with 240 mg intravenous nivolumab every 2 weeks. INTERPRETATION: ALT-803 in combination with nivolumab can be safely administered in an outpatient setting. The promising clinical activity observed with the addition of ALT-803 to the regimen of patients with PD-1 monoclonal antibody relapsed and refractory disease shows evidence of anti-tumour activity for a new class of agents in NSCLC. FUNDING: Altor BioScience (a NantWorks company), National Institutes of Health, and Medical University of South Carolina Hollings Cancer Center.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Nivolumab/administration & dosage , Proteins/administration & dosage , Aged , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Non-Small-Cell Lung/secondary , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Nivolumab/adverse effects , Proteins/adverse effects , Recombinant Fusion Proteins , Time Factors , Treatment Outcome , United States
11.
Expert Opin Biol Ther ; 23(9): 901-912, 2023.
Article in English | MEDLINE | ID: mdl-37587644

ABSTRACT

INTRODUCTION: Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED: In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION: OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Cell Differentiation , Immunotherapy
12.
Front Immunol ; 14: 1057702, 2023.
Article in English | MEDLINE | ID: mdl-36911733

ABSTRACT

Cancer immunotherapy such as anti-PD-1/anti-PD-L1 immune checkpoint blockade (ICB) can provide significant clinical benefit in patients with advanced malignancies. However, most patients eventually develop progressive disease, thus necessitating additional therapeutic options. We have developed a novel agent, a-TEA-LS, that selectively induces tumor cell death while sparing healthy tissues, leading to increased activation of tumor-reactive T cells and tumor regression. In the current study, we explored the impact of combined a-TEA-LS + ICB in orthotopic and spontaneously arising murine models of mammary carcinoma. We found that a-TEA-LS + ICB led to increased production of pro-inflammatory cytokines that were associated with a reduction in tumor growth and prolonged survival. Together, these data demonstrate the potential utility of a-TEA-LS + ICB for the treatment of breast cancer and provide the rationale for clinical translation of this novel approach.


Subject(s)
Breast Neoplasms , Immune Checkpoint Inhibitors , Humans , Animals , Mice , Female , Immunotherapy , Cytokines
13.
Bioanalysis ; 15(8): 429-447, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37125902

ABSTRACT

Previously designed flow cytometry panels have provided a framework to analyze T-cell activation; however, few provide an extensive view of lymphocyte populations, and none are optimized for murine models. This article describes a panel designed specifically to assess the expression of activation and exhaustion markers in expanding lymphocyte populations in tumor-bearing mice across two distinct genetic backgrounds: BALB/c and C57BL/6. This comprehensive panel enables the assessment of multiple functional states and immune checkpoint markers across cytotoxic CD8+ T cells, helper and regulatory CD4+ T cells and natural killer cells in murine whole blood, lymph nodes and tumor.


Flow cytometry is a technique that allows researchers to analyze protein expression on single cells through the detection of fluorescence markers that is widely used to assess immune cell phenotypes. The selection of target proteins expressed on specific cell subsets and accompanying fluorophores is known as 'panel building' and is critically important for accurate flow cytometry results. However, there is a lack of optimized and reproducible panels for mouse models of cancer. This article describes the development and performance of a robust panel that characterizes immune cell diversity and activation, while leaving room for customization. This flow cytometry panel provides a starting point for exploring the spectrum of mouse lymphocyte activation and is adaptable for subsequent studies.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocyte Activation , Mice , Animals , Flow Cytometry , Mice, Inbred C57BL , Lymphocyte Subsets , Biomarkers
14.
NPJ Breast Cancer ; 9(1): 53, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344474

ABSTRACT

Chemoimmunotherapy with anti-programmed cell death 1/ligand 1 and cytotoxic chemotherapy is a promising therapeutic modality for women with triple-negative breast cancer, but questions remain regarding optimal chemotherapy backbone and biomarkers for patient selection. We report final outcomes from a phase Ib trial evaluating pembrolizumab (200 mg IV every 3 weeks) with either weekly paclitaxel (80 mg/m2 weekly) or flat-dose capecitabine (2000 mg orally twice daily for 7 days of every 14-day cycle) in the 1st/2nd line setting. The primary endpoint is safety (receipt of 2 cycles without grade III/IV toxicities requiring discontinuation or ≥21-day delays). The secondary endpoint is efficacy (week 12 objective response). Exploratory aims are to characterize immunologic effects of treatment over time, and to evaluate novel biomarkers. The trial demonstrates that both regimens meet the pre-specified safety endpoint (paclitaxel: 87%; capecitabine: 100%). Objective response rate is 29% for pembrolizumab/paclitaxel (n = 4/13, 95% CI: 10-61%) and 43% for pembrolizumab/capecitabine (n = 6/14, 95% CI: 18-71%). Partial responses are observed in two subjects with chemo-refractory metaplastic carcinoma (both in capecitabine arm). Both regimens are associated with significant peripheral leukocyte contraction over time. Response is associated with clinical PD-L1 score, non-receipt of prior chemotherapy, and the H&E stromal tumor-infiltrating lymphocyte score, but also by a novel 27 gene IO score and spatial biomarkers (lymphocyte spatial skewness). In conclusion, pembrolizumab with paclitaxel or capecitabine is safe and clinically active. Both regimens are lymphodepleting, highlighting the competing immunostimulatory versus lymphotoxic effects of cytotoxic chemotherapy. Further exploration of the IO score and spatial TIL biomarkers is warranted. The clinical trial registration is NCT02734290.

15.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: mdl-35444059

ABSTRACT

BACKGROUND: Tumor cell death caused by radiation therapy (RT) triggers antitumor immunity in part because dying cells release adjuvant factors that amplify and sustain dendritic cell and T cell responses. We previously demonstrated that bempegaldesleukin (BEMPEG: NKTR-214, an immunostimulatory IL-2 cytokine prodrug) significantly enhanced the antitumor efficacy of RT through a T cell-dependent mechanism. Because RT can induce either immunogenic or tolerogenic cell death, depending on various factors (radiation dose, cell cycle phase), we hypothesized that providing a specific immunogenic adjuvant, like intratumoral therapy with a novel toll-like receptor (TLR) 7/8 agonist, NKTR-262, would improve systemic tumor-specific responses through the activation of local innate immunity. Therefore, we evaluated whether intratumoral NKTR-262 combined with systemic BEMPEG treatment would elicit improved tumor-specific immunity and survival compared with RT combined with BEMPEG. METHODS: Tumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; intravenously), RT (12 Gy × 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell responses in the blood and tumor 7 days post-treatment. The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell cytolytic activity was determined by an in vitro CTL assay. Data are representative of 1-2 independent experiments (n=5-14/group) and statistical significance was determined by 1-way analysis of variance (ANOVA) or repeated measures ANOVA (p value cut-off of 0.05). RESULTS: BEMPEG+NKTR-262 significantly improved survival compared with BEMPEG+RT in a CD8+ T cell-dependent manner. Response to BEMPEG+NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, BEMPEG+NKTR-262 induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+), compared with BEMPEG+RT (p<0.05). Further, BEMPEG+NKTR-262 treatment induced greater tumor-specific CD8+ T cell cytolytic function than BEMPEG+RT. CONCLUSIONS: BEMPEG+NKTR-262 therapy elicited more robust expansion of activated CD8+ T cells compared with BEMPEG+RT, suggesting that intratumoral TLR stimulation provides superior antigen presentation and costimulatory activity compared with RT. A clinical trial of BEMPEG+NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).


Subject(s)
Neoplasms , Toll-Like Receptor 7 , Adjuvants, Immunologic/metabolism , Animals , CD8-Positive T-Lymphocytes , Clinical Trials as Topic , Humans , Immunotherapy , Interleukin-2 , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/metabolism
16.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35086949

ABSTRACT

BACKGROUND: Chemoimmunotherapy is a standard treatment for triple-negative breast cancer (TNBC), however, the impacts of different chemotherapies on T-cell populations, which could correlate with clinical activity, are not known. Quantifying T-cell populations with flow cytometry and T-cell receptor (TCR) immunosequencing may improve our understanding of how chemoimmunotherapy affects T-cell subsets, and to what extent clonal shifts occur during treatment. TCR immunosequencing of intratumoral T cells may facilitate the identification and monitoring of putatively tumor-reactive T-cell clones within the blood. METHODS: Blood and tumor biopsies were collected from patients with metastatic TNBC enrolled in a phase Ib clinical trial of first or second-line pembrolizumab with paclitaxel or capecitabine. Using identical biospecimen processing protocols, blood samples from a cohort of patients treated for early-stage breast cancer were obtained for comparison. Treatment-related immunological changes in peripheral blood and intratumoral T cells were characterized using flow cytometry and TCR immunosequencing. Clonal proliferation rates of T cells were compared based on intratumoral enrichment. RESULTS: When combined with pembrolizumab, paclitaxel and capecitabine resulted in similar time-dependent lymphodepletions across measured peripheral T-cell subsets. Their effects were more modest than that observed following curative-intent dose-dense anthracycline and cyclophosphamide (ddAC) (average fold-change in CD3+ cells, capecitabine: -0.42, paclitaxel: -0.56, ddAC: -1.21). No differences in T-cell clonality or richness were observed following capecitabine or paclitaxel-based treatments. Regression modeling identified differences in the emergence of novel T-cell clones that were not detected at baseline (odds compared with ddAC, capecitabine: 0.292, paclitaxel: 0.652). Pembrolizumab with paclitaxel or capecitabine expanded T-cell clones within tumors; however, these clones did not always expand within the blood. Proliferation rates within the blood were similar between clones that were enriched and those that were not enriched within tumors. CONCLUSION: Chemoimmunotherapy for metastatic TNBC with pembrolizumab and capecitabine or paclitaxel resulted in similar peripheral T-cell subset lymphodepletion without altering T-cell clonal diversity. Regression modeling methods are applicable in immune monitoring studies, such as this to identify the odds of novel T-cell clones emerging during treatment, and proliferation rates of tumor-enriched T-cell clones.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , T-Lymphocyte Subsets/immunology , Triple Negative Breast Neoplasms/drug therapy , Adolescent , Adult , Capecitabine/administration & dosage , Female , Humans , Lymphocyte Depletion , Middle Aged , Neoplasm Metastasis , Paclitaxel/administration & dosage , Receptors, Antigen, T-Cell/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Young Adult
17.
Mol Cancer Res ; 20(6): 983-995, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35302641

ABSTRACT

Intratumoral delivery of plasmid IL12 via electroporation (IT-tavo-EP) induces localized expression of IL12 leading to regression of treated and distant tumors with durable responses and minimal toxicity. A key driver in amplifying this local therapy into a systemic response is the magnitude and composition of immune infiltrate in the treated tumor. While intratumoral IL12 typically increases the density of CD3+ tumor-infiltrating lymphocytes (TIL), this infiltrate is composed of a broad range of T-cell subsets, including activated tumor-specific T cells, less functional bystander T cells, as well as suppressive T regulatory cells. To encourage a more favorable on-treatment tumor microenvironment (TME), we explored combining this IL12 therapy with an intratumoral polyclonal T-cell stimulator membrane-anchored anti-CD3 to productively engage a diverse subset of lymphocytes including the nonreactive and suppressive T cells. This study highlighted that combined intratumoral electroporation of IL12 and membrane-anchored anti-CD3 plasmids can enhance cytokine production, T-cell cytotoxicity, and proliferation while limiting the suppressive capacity within the TME. These collective antitumor effects not only improve regression of treated tumors but drive systemic immunity with control of nontreated contralateral tumors in vivo. Moreover, combination of IL12 and anti-CD3 restored the function of TIL isolated from a patient with melanoma actively progressing on programmed cell death protein 1 (PD-1) checkpoint inhibitor therapy. IMPLICATIONS: This DNA-encodable polyclonal T-cell stimulator (membrane-anchored anti-CD3 plasmid) may represent a key addition to intratumoral IL12 therapies in the clinic.


Subject(s)
Interleukin-12 , Melanoma , Electroporation , Humans , Immunotherapy , Interleukin-12/genetics , Interleukin-12/metabolism , Melanoma/pathology , Plasmids/genetics , Tumor Microenvironment
18.
PLoS One ; 16(2): e0247238, 2021.
Article in English | MEDLINE | ID: mdl-33596250

ABSTRACT

The TSA Opal multiplex immunohistochemistry (mIHC) protocol (PerkinElmer) has been used to characterize immune infiltration in human cancers. This technique allows multiple biomarkers to be simultaneously stained in a single tissue section, which helps to elucidate the spatial relationship among individual cell types. We developed and optimized two improved mIHC protocols for a 7-color panel containing 6 biomarkers (CD3, CD8, CD163, PD-L1, FoxP3, and cytokeratin (CK)) and DAPI. The only difference between these two protocols was the staining sequence of those 6 biomarkers as the first sequence is PD-L1/CD163/CD8/CK/CD3/FoxP3/DAPI and the second sequence is FoxP3/CD163/CD8/CK/CD3/PD-L1/DAPI. By comparing PD-L1/FoxP3 staining in mIHC and singleplex PD-L1/FoxP3 staining on the adjacent slide, we demonstrated that the staining sequence does not affect the staining intensity of individual biomarkers as long as a proper antigen retrieval method was used. Our study suggests that use of an antigen retrieval buffer with higher pH value (such as Tris-EDTA pH9.0) than that of the stripping buffers (such as citrate buffer pH6.0) is helpful when using this advanced mIHC method to develop panels with multiple biomarkers. Otherwise, individual biomarkers may exhibit different intensities when the staining sequence is changed. By using this protocol, we characterized immune infiltration and PD-L1 expression in head and neck squamous cell carcinoma (HNSCC), breast cancer (BCa), and non-small cell lung cancer (NSCLC) specimens. We observed a statistically significant increase in CD3+ cell populations within the stroma of NSCLC as compared to BCa and increased PD-L1+ tumor cells in HNSCC as opposed to BCa.


Subject(s)
B7-H1 Antigen/metabolism , Breast Neoplasms/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Head and Neck Neoplasms/immunology , Lung Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers, Tumor/metabolism , CD3 Complex/metabolism , CD8 Antigens/metabolism , Female , Forkhead Transcription Factors/metabolism , Humans , Immunohistochemistry , Indoles/chemistry , Keratins/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Cell Surface/metabolism
19.
Cancer Immunol Res ; 9(4): 430-440, 2021 04.
Article in English | MEDLINE | ID: mdl-33593794

ABSTRACT

CTLA-4 blockade in combination with an agonist OX40-specific monoclonal antibody synergizes to augment antitumor immunity through enhanced T-cell effector function, leading to increased survival in preclinical cancer models. We have shown previously that anti-OX40/anti-CTLA-4 combination therapy synergistically enhances the expression of Eomesodermin (Eomes) in CD8+ T cells. Eomes is a critical transcription factor for the differentiation and memory function of CD8+ T cells. We hypothesized that EomeshiCD8+ T cells were necessary for anti-OX40/anti-CTLA-4 immunotherapy efficacy and that further enhancement of this population would improve tumor-free survival. Indeed, CD8+ T cell-specific deletion of Eomes abrogated the efficacy of anti-OX40/anti-CTLA-4 therapy. We also found that anti-OX40/anti-CTLA-4-induced EomeshiCD8+ T cells expressed lower levels of checkpoint receptors (PD1, Tim-3, and Lag-3) and higher levels of effector cytokines (IFNγ and TNFα) than their Eomeslo counterparts. Eomes expression is negatively regulated in T cells through interleukin-2-inducible T-cell kinase (ITK) signaling. We investigated the impact of modulating ITK signaling with ibrutinib, an FDA-approved tyrosine kinase inhibitor, and found that anti-OX40/anti-CTLA-4/ibrutinib therapy further enhanced CD8+ T cell-specific Eomes expression, leading to enhanced tumor regression and improved survival, both of which were associated with increased T-cell effector function across multiple tumor models. Taken together, these data demonstrate the potential of anti-OX40/anti-CTLA-4/ibrutinib as a triple therapy to improve the efficacy of immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Immunotherapy/methods , Neoplasms/therapy , Receptors, OX40/immunology , Adoptive Transfer , Animals , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Neoplasm Transplantation , Neoplasms/immunology , T-Box Domain Proteins/metabolism
20.
Front Oncol ; 11: 635237, 2021.
Article in English | MEDLINE | ID: mdl-34168978

ABSTRACT

Metaplastic breast cancer is a rare and often chemo-refractory subtype of breast cancer with poor prognosis and limited treatment options. Recent studies have reported overexpression of programmed death ligand 1 (PD-L1) in metaplastic breast cancers, and there are several reports of anti-PD-1/L1 being potentially active in this disease. In this case series, we present 5 patients with metastatic metaplastic breast cancer treated with anti-PD-1-based therapy at a single center, with 3 of 5 cases demonstrating a response to therapy, and one of the responding cases being a metaplastic lobular carcinoma with low-level hormone receptor expression. Cases were evaluated for PD-L1 expression, tumor infiltrating lymphocytes (TILs), DNA mutations, RNA sequencing, and T-cell receptor sequencing. Duration of the response in these cases was limited, in contrast to the more durable responses noted in other recently published reports.

SELECTION OF CITATIONS
SEARCH DETAIL