ABSTRACT
Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.
Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cyanobacteria , Lipids/pharmacology , Microalgae , Animals , Anti-Bacterial Agents/chemistry , Aquatic Organisms , Lipids/chemistry , Microbial Sensitivity Tests , Staphylococcus aureus/drug effectsABSTRACT
Four natural lactylates of chlorinated fatty acids, chlorosphaerolactylates A-D (1-4), were isolated from the methanolic extract of the cyanobacterium Sphaerospermopsis sp. LEGE 00249 through a combination of bioassay-guided and MS-guided approaches. Compounds 1-4 are esters of (mono-, di-, or tri)chlorinated lauric acid and lactic acid, whose structures were assigned on the basis of spectrometric and spectroscopic methods inclusive of 1D and 2D NMR experiments. High-resolution mass-spectrometry data sets also demonstrated the existence of other minor components that were identified as chlorosphaero(bis)lactylate analogues. The chlorosphaerolactylates were tested for potential antibacterial, antifungal, and antibiofilm properties using bacterial and fungal clinical isolates. Compounds 1-4 showed a weak inhibitory effect on the growth of Staphylococcus aureus S54F9 and Candida parapsilosis SMI416, as well as on the biofilm formation of coagulase-negative Staphylococcus hominis FI31.
Subject(s)
Anti-Infective Agents/chemistry , Cyanobacteria/chemistry , Fatty Acids/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Candida/drug effects , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Staphylococcus hominis/drug effectsABSTRACT
Synthetic food additives generate a negative perception in consumers. This fact generates an important pressure on food manufacturers, searching for safer natural alternatives. Phytochemicals (such as polyphenols and thiols) and plant essential oils (terpenoids) possess antimicrobial activities that are able to prevent food spoilage due to fungi (e.g., Aspergillus, Penicillium) and intoxications (due to mycotoxins), both of which are important economic and health problems worldwide. This review summarizes industrially interesting antifungal bioactivities from the three main types of plant nutraceuticals: terpenoids (as thymol), polyphenols (as resveratrol) and thiols (as allicin) as well as some of the mechanisms of action. These phytochemicals are widely distributed in fruits and vegetables and are very useful in food preservation as they inhibit growth of important spoilage and pathogenic fungi, affecting especially mycelial growth and germination. Terpenoids and essential oils are the most abundant group of secondary metabolites found in plant extracts, especially in common aromatic plants, but polyphenols are a more remarkable group of bioactive compounds as they show a broad array of bioactivities.
Subject(s)
Food Contamination/prevention & control , Food Preservation , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , Terpenes/pharmacology , Food Microbiology , Fungi , MycotoxinsABSTRACT
The chemical composition of five marine microalgae (Dunaliella sp., Dunaliella salina, Chaetoceros calcitrans, Chaetoceros gracilis and Tisochrysis lutea) was investigated through nuclear magnetic resonance (NMR) spectroscopic study of the soluble material obtained by sequential extraction with hexane, ethyl acetate (AcOEt) and methanol of biomass from stationary phase cultures. Hexane extracted the major lipids present in the microalgae during the stationary phase of growth, which correspond to storage lipids. Triacylglycerols (TGs) were the only storage lipids produced by Dunaliella and Chaetoceros. In contrast, T. lutea predominantly stored polyunsaturated long-chain alkenones, with sterols also detected as minor components of the hexane extract. The molecular structure of brassicasterol was determined in T. lutea and the presence of squalene in this sample was also unequivocally detected. Monogalactosyldiacylglycerols (MGDGs) and pigments were concentrated in the AcOEt extracts. C. calcitrans and D. salina constituted an exception due to the high amount of TGs and glycerol produced, respectively, by these two strains. Chlorophylls a and b and ß-carotene were the major pigments synthesized by Dunaliella and chlorophyll a and fucoxanthin were the only pigments detected in Chaetoceros and T. lutea. Information concerning the acyl chains present in TGs and MGDGs as well as the positional distribution of acyl chains on the glycerol moiety was obtained by NMR analysis of hexane and AcOEt extracts, with results consistent with those expected for the genera studied. Fatty acid composition of TGs in the two Dunaliella strains was different, with polyunsaturated acyl chains almost absent in the storage lipids produced by D. salina. Except in C. calcitrans, the polar nature of soluble compounds was inferred through the relative extraction yield using methanol as the extraction solvent. Glycerol was the major component of this fraction for the Dunaliella strains. In T. lutea 1,4/2,5-cyclohexanetetrol (CHT) and dimethylsulfoniopropionate (DMSP) preponderated. CHT was also the major polyol present in the Chaetoceros strains in which DMSP was not detected, but prominent signals of 2,3-dihydroxypropane-1-sulfonate (DHSP) were observed in the 1H NMR spectra of methanolic extracts. The presence of DHSP confirms the production of this metabolite by diatoms. In addition, several other minor compounds (digalactosyldiacyglycerols (DGDGs), sulphoquinovosyldiacylglycerols (SQDGs), amino acids, carbohydrates, scyllo-inositol, mannitol, lactic acid and homarine) were also identified in the methanolic extracts. The antibacterial and antibiofilm activities of the extracts were tested. The AcOEt extract from C. gracilis showed a moderate antibiofilm activity.
Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Microalgae/chemistry , Nuclear Magnetic Resonance, Biomolecular , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microalgae/metabolism , Microbial Sensitivity Tests , Molecular ConformationABSTRACT
Combination therapy consists in the simultaneous administration of a conventional chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more natural bioactives (usually from plant or fungal origin) of small molecular weight. This combination of anticancer drugs may be applied to cell cultures of tumor cells, or to an animal model for a cancer type (or its xenograft), or to a clinical trial in patients. In this review, we summarize current knowledge describing diverse synergistic effects on colorectal cancer cell cultures, animal models, and clinical trials of various natural bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which may be important with respect to diminish final doses of the chemotherapy drug, although maintaining its biological effect. This is important as these approaches may help reduce side effects in patients under conventional chemotherapy. Also, these molecules may exerts their synergistic effects via different cell cycle pathways, including different ones to those responsible of resistance phenotypes: transcription factors, membrane receptors, adhesion and structural molecules, cell cycle regulatory components, and apoptosis pathways.