Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Lett ; 49(7): 1737-1740, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560850

ABSTRACT

Inference of joule-class THz radiation sources from microchannel targets driven with hundreds of joule, picosecond lasers is reported. THz sources of this magnitude are useful for nonlinear pumping of matter and for charged-particle acceleration and manipulation. Microchannel targets demonstrate increased laser-THz conversion efficiency compared to planar foil targets, with laser energy to THz energy conversion up to ∼0.9% in the best cases.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093112

ABSTRACT

The single-line-of-sight time-resolved x-ray imager (SLOS-TRXI), a fast-gated x-ray imager used for capturing x-ray self-emission in inertial confinement fusion experiments on OMEGA, has been upgraded and characterized. SLOS-TRXI combines an electron-dilation imager and a hybrid complementary metal-oxide-semiconductor (hCMOS) sensor to capture multiple gated frames on a single line of sight with a temporal resolution of ∼40 ps and a spatial resolution of 10 µm. The original hCMOS sensor with four frames was replaced with a newer-generation hCMOS sensor having eight frames. Gate characterizations of both the sensor and the entire SLOS-TRXI diagnostic were performed using ∼10-ps FWHM visible (2ω) and UV (4ω) short-pulse lasers, respectively. A stepped echelon was used to generate a train of five UV laser pulses having an interpulse separation of 30 ± 3 ps. Characterization results of the hCMOS gating (2.28 ± 0.02-ns FWHM on average) and a temporal resolution of the upgraded SLOS-TRXI (34 ± 4-ps FWHM on average) are presented. A temporal magnification for the electron-dilation imager between 40 and 60 was inferred from the characterization results. The spatial resolution of the upgraded SLOS-TRXI remains the same in light of this work.

3.
Phys Rev E ; 109(4-2): 045209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755937

ABSTRACT

Precise modeling of shocks in inertial confinement fusion implosions is critical for obtaining the desired compression in experiments. Shock velocities and postshock conditions are determined by laser-energy deposition, heat conduction, and equations of state. This paper describes experiments at the National Ignition Facility (NIF) [E. M. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)10.1088/0741-3335/41/12B/303] where multiple shocks are launched into a cone-in-shell target made of polystyrene, using laser-pulse shapes with two or three pickets and varying on-target intensities. Shocks are diagnosed using the velocity interferometric system for any reflector (VISAR) diagnostic [P. M. Celliers et al., Rev. Sci. Instrum. 75, 4916 (2004)0034-674810.1063/1.1807008]. Simulated and inferred shock velocities agree well for the range of intensities studied in this work. These directly-driven shock-timing experiments on the NIF provide a good measure of early-time laser-energy coupling. The validated models add to the credibility of direct-drive-ignition designs at the megajoule scale.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39177458

ABSTRACT

The next-generation magnetic recoil spectrometer (MRSnext) is being designed to replace the current MRS at the National Ignition Facility and OMEGA for measurements of the neutron spectrum from an inertial confinement fusion implosion. The MRSnext will provide a far-superior performance and faster data turnaround than the current MRS systems, i.e., a 2× and 6× improvement in energy resolution at the NIF and OMEGA, respectively, and 20× improvement in data turnaround time. The substantially improved performance of the MRSnext is enabled by using electromagnets that provide a short focal plane (12-16 cm) and unprecedented flexibility for a wide range of applications. In addition to being able to measure neutron yield, apparent ion temperature, areal density, and plasma-flow velocity over a wide range of yields, the NIF MRSnext will be able to directly, uniquely assess the alpha heating of the fuel ions through measurements of the alpha knock-on tail in the neutron spectrum. The goal is to implement a radiation-hard electronic detection system capable of providing rapid data acquisition and analysis. The development of the MRSnext will also set the foundation for the more advanced, time-resolving MRSt and serve as a testbed for its implementation on the NIF.

SELECTION OF CITATIONS
SEARCH DETAIL