Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38804514

ABSTRACT

BACKGROUND: Antibody-mediated rejection is a leading cause of kidney-transplant failure. The targeting of CD38 to inhibit graft injury caused by alloantibodies and natural killer (NK) cells may be a therapeutic option. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with antibody-mediated rejection that had occurred at least 180 days after transplantation to receive nine infusions of the CD38 monoclonal antibody felzartamab (at a dose of 16 mg per kilogram of body weight) or placebo for 6 months, followed by a 6-month observation period. The primary outcome was the safety and side-effect profile of felzartamab. Key secondary outcomes were renal-biopsy results at 24 and 52 weeks, donor-specific antibody levels, peripheral NK-cell counts, and donor-derived cell-free DNA levels. RESULTS: A total of 22 patients underwent randomization (11 to receive felzartamab and 11 to receive placebo). The median time from transplantation until trial inclusion was 9 years. Mild or moderate infusion reactions occurred in 8 patients in the felzartamab group. Serious adverse events occurred in 1 patient in the felzartamab group and in 4 patients in the placebo group; graft loss occurred in 1 patient in the placebo group. After week 24, resolution of morphologic antibody-mediated rejection was more frequent with felzartamab (in 9 of 11 patients [82%]) than with placebo (in 2 of 10 patients [20%]), for a difference of 62 percentage points (95% confidence interval [CI], 19 to 100) and a risk ratio of 0.23 (95% confidence interval [CI], 0.06 to 0.83). The median microvascular inflammation score was lower in the felzartamab group than in the placebo group (0 vs. 2.5), for a mean difference of -1.95 (95% CI, -2.97 to -0.92). Also lower was a molecular score reflecting the probability of antibody-mediated rejection (0.17 vs. 0.77) and the level of donor-derived cell-free DNA (0.31% vs. 0.82%). At week 52, the recurrence of antibody-mediated rejection was reported in 3 of 9 patients who had a response to felzartamab, with an increase in molecular activity and biomarker levels toward baseline levels. CONCLUSIONS: Felzartamab had acceptable safety and side-effect profiles in patients with antibody-mediated rejection. (Funded by MorphoSys and Human Immunology Biosciences; ClinicalTrials.gov number, NCT05021484; and EUDRACT number, 2021-000545-40.).

2.
Article in English | MEDLINE | ID: mdl-38632055

ABSTRACT

BACKGROUND AND HYPOTHESIS: The decision for acceptance or discard of the increasingly rare and marginal brain-dead donor kidneys in Eurotransplant (ET) countries has to be made without solid evidence. Thus, we developed and validated flexible clinicopathological scores called 2-Step Scores for the prognosis of delayed graft function (DGF) and one-year death-censored transplant loss (1y-tl) reflecting the current practice of six ET countries including Croatia and Belgium. METHODS: The training set was n=620 for DGF and n=711 for 1y-tl, with validation sets n=158 and n=162. In step 1, stepwise logistic regression models including only clinical predictors were used to estimate the risks. In step 2, risk estimates were updated for statistically relevant intermediate risk percentiles with nephropathology. RESULTS: Step 1 revealed an increased risk of DGF with increased cold ischaemia time, donor and recipient BMI, dialysis vintage, number of HLA-DR mismatches or recipient CMV IgG positivity. On the training and validation set, c-statistics were 0.672 and 0.704, respectively. At a range between 18% and 36%, accuracy of DGF-prognostication improved with nephropathology including number of glomeruli and Banff cv (updated overall c statistics of 0.696 and 0.701, respectively).Risk of 1y-tl increased in recipients with cold ischaemia time, sum of HLA-A. -B, -DR mismatches and donor age. On training and validation sets, c-statistics were 0.700 and 0.769, respectively. Accuracy of 1y-tl prediction improved (c-statistics = 0.706 and 0.765) with Banff ct. Overall, calibration was good on the training, but moderate on the validation set; discrimination was at least as good as established scores when applied to the validation set. CONCLUSION: Our flexible 2-Step Scores with optional inclusion of time-consuming and often unavailable nephropathology should yield good results for clinical practice in ET, and may be superior to established scores. Our scores are adaptable to donation after cardiac death and perfusion pump use.

3.
Kidney Int ; 103(2): 365-377, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436680

ABSTRACT

Antibody-mediated rejection (ABMR) is a major cause of kidney allograft failure. Biopsy-based surrogate endpoints reflecting ABMR progression on sequential biopsies that predict long-term outcome offer the potential to make treatment trials for ABMR feasible. However, the Banff transplant glomerulopathy (TG) scoring system (chronic glomerular injury score [cg]) relies on relatively crude and arbitrary ordinal grades and has low inter-observer concordance that currently limits its usefulness as a surrogate endpoint for ABMR progression in clinical drug trials. Here, we describe and validate a novel quantitative method for quantifying progression of TG in ABMR. Using digital pathology in sequential biopsies from 75 patients at various stages of ABMR, we scored all capillaries in the most affected glomeruli for basement membrane duplication that were correlated with allograft function, outcome, Banff lesion scores, and gene expression. Our digital scoring reflected TG progression better than the categorical Banff cg score and correlated with Banff ABMR and chronicity lesions, but not transcript changes. In multivariate analysis, the delta change between biopsies with serum creatinine and mean percent duplicated glomerular basement membranes was significantly associated with graft loss. Neither the delta in any Banff lesion scores (including cg) nor in gene expression was associated with outcome. Receiver operating characteristic curve analysis showed that the digital pathology approach was superior to the conventional score for predicting graft failure. Thus, our digital pathology-based approach for scoring TG accurately assessed progression in TG. However, further validation as a potential surrogate endpoint in clinical trials for the treatment of ABMR is warranted.


Subject(s)
Kidney Diseases , Renal Insufficiency , Humans , Antibodies , Biopsy , Glomerular Basement Membrane , Graft Rejection/genetics
4.
Article in English | MEDLINE | ID: mdl-37960919

ABSTRACT

BACKGROUND: Early progression of chronic histologic lesions in kidney allografts represents the main finding in graft attrition. The objective of this retrospective cohort study was to elucidate whether HLA histocompatibility is associated with progression of chronic histologic lesions in the first year post-transplant. Established associations of de novo donor-specific antibody (dnDSA) formation with HLA mismatch and microvascular inflammation (MVI) were calculated to allow for comparability with other study cohorts. METHODS: We included 117 adult kidney transplant recipients, transplanted between 2016 and 2020 from predominantly deceased donors, who had surveillance biopsies at three and twelve months. Histologic lesion scores were assessed according to the Banff classification. HLA mismatch scores (i.e. eplet, predicted indirectly recognizable HLA-epitopes algorithm (PIRCHE-II), HLA epitope mismatch algorithm (HLA-EMMA), HLA whole antigen A/B/DR) were calculated for all transplant pairs. Formation of dnDSAs was quantified by single antigen beads. RESULTS: More than one third of patients exhibited a progression of chronic lesion scores by at least one Banff grade in tubular atrophy (ct), interstitial fibrosis (ci), arteriolar hyalinosis (ah) and inflammation in the area of interstitial fibrosis and tubular atrophy (i-IFTA) from the three to the twelve-month biopsy. Multivariable proportional odds logistic regression models revealed no association of HLA mismatch scores with progression of histologic lesions, except for ah and especially HLA-EMMA DRB1 (OR = 1.10, 95%-CI: 1.03-1.18). Furthermore, the established associations of dnDSA formation with HLA mismatch and MVI (OR = 5.31, 95-% CI: 1.19-22.57) could be confirmed in our cohort. CONCLUSIONS: These data support the association of HLA mismatch and alloimmune response, while suggesting that other factors contribute to early progression of chronic histologic lesions.

7.
Transpl Int ; 36: 11589, 2023.
Article in English | MEDLINE | ID: mdl-37680647

ABSTRACT

The Thrombotic Microangiopathy Banff Working Group (TMA-BWG) was formed in 2015 to survey current practices and develop minimum diagnostic criteria (MDC) for renal transplant TMA (Tx-TMA). To generate consensus among pathologists and nephrologists, the TMA BWG designed a 3-Phase study. Phase I of the study is presented here. Using the Delphi methodology, 23 panelists with >3 years of diagnostic experience with Tx-TMA pathology listed their MDC suggesting light, immunofluorescence, and electron microscopy lesions, clinical and laboratory information, and differential diagnoses. Nine rounds (R) of consensus resulted in MDC validated during two Rs using online evaluation of whole slide digital images of 37 biopsies (28 TMA, 9 non-TMA). Starting with 338 criteria the process resulted in 24 criteria and 8 differential diagnoses including 18 pathologic, 2 clinical, and 4 laboratory criteria. Results show that 3/4 of the panelists agreed on the diagnosis of 3/4 of cases. The process also allowed definition refinement for 4 light and 4 electron microscopy lesions. For the first time in Banff classification, the Delphi methodology was used to generate consensus. The study shows that Delphi is a democratic and cost-effective method allowing rapid consensus generation among numerous physicians dealing with large number of criteria in transplantation.


Subject(s)
Kidney Transplantation , Thrombotic Microangiopathies , Humans , Consensus , Cost-Benefit Analysis , Biopsy
8.
Transpl Int ; 36: 11590, 2023.
Article in English | MEDLINE | ID: mdl-37680648

ABSTRACT

The Banff community summoned the TMA Banff Working Group to develop minimum diagnostic criteria (MDC) and recommendations for renal transplant TMA (Tx-TMA) diagnosis, which currently lacks standardized criteria. Using the Delphi method for consensus generation, 23 nephropathologists (panelists) with >3 years of diagnostic experience with Tx-TMA were asked to list light, immunofluorescence, and electron microscopic, clinical and laboratory criteria and differential diagnoses for Tx-TMA. Delphi was modified to include 2 validations rounds with histological evaluation of whole slide images of 37 transplant biopsies (28 TMA and 9 non-TMA). Starting with 338 criteria in R1, MDC were narrowed down to 24 in R8 generating 18 pathological, 2 clinical, 4 laboratory criteria, and 8 differential diagnoses. The panelists reached a good level of agreement (70%) on 76% of the validated cases. For the first time in Banff classification, Delphi was used to reach consensus on MDC for Tx-TMA. Phase I of the study (pathology phase) will be used as a model for Phase II (nephrology phase) for consensus regarding clinical and laboratory criteria. Eventually in Phase III (consensus of the consensus groups) and the final MDC for Tx-TMA will be reported to the transplantation community.


Subject(s)
Kidney Transplantation , Thrombotic Microangiopathies , Humans , Kidney Transplantation/adverse effects , Consensus , Kidney , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology , Amines , Anticoagulants , Allografts
9.
J Am Soc Nephrol ; 32(3): 708-722, 2021 03.
Article in English | MEDLINE | ID: mdl-33443079

ABSTRACT

BACKGROUND: Late antibody-mediated rejection (ABMR) is a leading cause of transplant failure. Blocking IL-6 has been proposed as a promising therapeutic strategy. METHODS: We performed a phase 2 randomized pilot trial to evaluate the safety (primary endpoint) and efficacy (secondary endpoint analysis) of the anti-IL-6 antibody clazakizumab in late ABMR. The trial included 20 kidney transplant recipients with donor-specific, antibody-positive ABMR ≥365 days post-transplantation. Patients were randomized 1:1 to receive 25 mg clazakizumab or placebo (4-weekly subcutaneous injections) for 12 weeks (part A), followed by a 40-week open-label extension (part B), during which time all participants received clazakizumab. RESULTS: Five (25%) patients under active treatment developed serious infectious events, and two (10%) developed diverticular disease complications, leading to trial withdrawal. Those receiving clazakizumab displayed significantly decreased donor-specific antibodies and, on prolonged treatment, modulated rejection-related gene-expression patterns. In 18 patients, allograft biopsies after 51 weeks revealed a negative molecular ABMR score in seven (38.9%), disappearance of capillary C4d deposits in five (27.8%), and resolution of morphologic ABMR activity in four (22.2%). Although proteinuria remained stable, the mean eGFR decline during part A was slower with clazakizumab compared with placebo (-0.96; 95% confidence interval [95% CI], -1.96 to 0.03 versus -2.43; 95% CI, -3.40 to -1.46 ml/min per 1.73 m2 per month, respectively, P=0.04). During part B, the slope of eGFR decline for patients who were switched from placebo to clazakizumab improved and no longer differed significantly from patients initially allocated to clazakizumab. CONCLUSIONS: Although safety data indicate the need for careful patient selection and monitoring, our preliminary efficacy results suggest a potentially beneficial effect of clazakizumab on ABMR activity and progression.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Graft Rejection/therapy , Interleukin-6/antagonists & inhibitors , Kidney Transplantation/adverse effects , Adult , Allografts , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Female , Glomerular Filtration Rate , Graft Rejection/immunology , Graft Rejection/physiopathology , Humans , Infections/etiology , Interleukin-6/immunology , Isoantibodies/blood , Male , Middle Aged , Tissue Donors , Treatment Outcome , Young Adult
10.
Am J Transplant ; 21(11): 3765-3774, 2021 11.
Article in English | MEDLINE | ID: mdl-34152692

ABSTRACT

CTLA4Ig has been shown to improve kidney allograft function, but an increased frequency of early rejection episodes poses a major obstacle for more widespread clinical use. The deleterious effect of CTLA4Ig on Treg numbers provides a possible explanation for graft injury. Therefore, we aimed at improving CTLA4Ig's efficacy by therapeutically increasing the number of Tregs. Murine cardiac allograft transplantation (BALB/c  to B6) was performed under CTLA4Ig therapy modeled after the clinically approved dosing regimen and Tregs were transferred early or late after transplant. Neither early nor late Treg transfer prolonged allograft survival. Transferred Tregs were traceable in various lymphoid compartments but only modestly increased overall Treg numbers. Next, we augmented Treg numbers in vivo by means of IL2 complexes. A short course of IL2/anti-IL2-complexes administered before transplantation reversed the CTLA4Ig-mediated decline in Tregs. Of note, the addition of IL2/anti-IL2-complexes to CTLA4Ig therapy substantially prolonged heart allograft survival and significantly improved graft histology on day 100. The depletion of Tregs abrogated this effect and resulted in a significantly diminished allograft survival. The increase in Treg numbers upon IL2 treatment was associated with a decreased expression of B7 on dendritic cells. These results demonstrate that therapy with IL2 complexes improves the efficacy of CTLA4Ig by counterbalancing its unfavorable effect on Tregs.


Subject(s)
Heart Transplantation , Immunoconjugates , Abatacept/therapeutic use , Animals , Graft Rejection/drug therapy , Graft Rejection/etiology , Graft Rejection/prevention & control , Graft Survival , Immunoconjugates/pharmacology , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Mice , T-Lymphocytes, Regulatory
11.
Am J Transplant ; 21(3): 968-977, 2021 03.
Article in English | MEDLINE | ID: mdl-32633070

ABSTRACT

Eliminating cytoreductive conditioning from chimerism-based tolerance protocols would facilitate clinical translation. Here we investigated the impact of major histocompatibility complex (MHC) and minor histocompatibility antigen (MiHA) barriers on mechanisms of tolerance and rejection in this setting. Transient depletion of natural killer (NK) cells at the time of bone marrow (BM) transplantation (BMT) (20 × 106 BALB/c BM cells → C57BL/6 recipients under costimulation blockade [CB] and rapamycin) prevented BM rejection. Despite persistent levels of mixed chimerism, BMT recipients gradually rejected skin grafts from the same donor strain. Extending NK cell depletion did not improve skin graft survival. However, F1 (C57BL/6×BALB/c) donors, which do not elicit NK cell-mediated rejection, induced durable chimerism and tolerance. In contrast, if F1 donors with BALB/c background only were used (BALB/c×BALB.B), no tolerance was observed. In the absence of MiHA disparities (B10.D2 donors, MHC-mismatch only), temporal NK cell depletion established stable chimerism and tolerance. Conversely, MHC identical BM (BALB.B donors, MiHA mismatch only) readily engrafted without NK cell depletion but no skin graft tolerance ensued. Therefore, we conclude that under CB and rapamycin, MHC disparities provoke NK cell-mediated BM rejection in nonirradiated recipients whereas MiHA disparities do not prevent BM engraftment but impede skin graft tolerance in established mixed chimeras.


Subject(s)
Chimerism , Immune Tolerance , Animals , Bone Marrow Transplantation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Skin Transplantation , Transplantation Chimera , Transplantation Tolerance
12.
Transpl Int ; 34(8): 1494-1505, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33983671

ABSTRACT

Gene expression profiling of renal allograft biopsies revealed the Duffy antigen receptor for chemokines (DARC) as being strikingly upregulated in antibody-mediated rejection (ABMR). DARC has previously been shown to be associated with endothelial injury. This study aimed at assessing the value of DARC immunohistochemistry as diagnostic marker in ABMR. The study was performed on 82 prospectively collected biopsies of a clinically well-defined population (BORTEJECT trial, NCT01873157) of DSA-positive patients with gene expression data available for all biopsies. Diagnostic histologic assessment of biopsies was performed according to the Banff diagnostic scheme. DARC expression was focally accentuated, on peritubular capillaries (PTC) mostly in areas of interstitial fibrosis and/or inflammation. DARC positivity was associated with diagnosis of ABMR and correlated with DARC gene expression levels detected by microarray analysis. Still, as previously described, a substantial number of biopsies without signs of rejection showed DARC-positive PTC. We did not observe significantly reduced graft survival in cases showing histologic signs of ABMR and being DARC-positive, as compared to DARC-negative ABMR. In summary, the upregulation of DARC, detected by immunohistochemistry, is associated with but not specific for ABMR. We did not observe reduced graft survival in DARC-positive patients.


Subject(s)
Kidney Transplantation , Allografts , Graft Rejection , Humans , Isoantibodies , Kidney , Kidney Transplantation/adverse effects
13.
Transpl Int ; 34(9): 1689-1702, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34448270

ABSTRACT

Circulating donor-specific antibodies (DSA) do not necessarily indicate antibody-mediated rejection (ABMR). Here, we evaluated the diagnostic value of donor-derived cell-free DNA (dd-cfDNA) as an add-on to DSA detection. The study included two independent cohorts of DSA+ kidney allograft recipients, 45 subclinical cases identified by cross-sectional antibody screening (cohort 1), and 30 recipients subjected to indication biopsies (cohort 2). About 50% of the DSA+ recipients had ABMR and displayed higher dd-cfDNA levels than DSA+ ABMR- recipients (cohort 1: 1.90% [median; IQR: 0.78-3.90%] vs. 0.52% [0.35-0.72%]; P < 0.001); (cohort 2: 1.20% [0.82-2.50%] vs. 0.59% [0.28-2.05%]; P = 0.086). Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.89 and 0.69 for dd-cfDNA, and 0.88 and 0.77 for DSA mean fluorescence intensity (MFI), respectively. In combined models, adding dd-cfDNA to DSA-MFI or vice versa significantly improved the diagnostic accuracy. Limited diagnostic performance of dd-cfDNA in cohort 2 was related to the frequent finding of other types of graft injury among ABMR- recipients, like T cell-mediated rejection or glomerulonephritis. For dd-cfDNA in relation to injury of any cause an AUC of 0.97 was calculated. Monitoring of dd-cfDNA in DSA+ patients may be a useful tool to detect ABMR and other types of injury.


Subject(s)
Cell-Free Nucleic Acids , Kidney Transplantation , Allografts , Antibodies , Cross-Sectional Studies , Graft Rejection/diagnosis , Humans , Isoantibodies , Kidney , Kidney Transplantation/adverse effects
14.
Biometals ; 34(2): 341-350, 2021 04.
Article in English | MEDLINE | ID: mdl-33486677

ABSTRACT

Aims of this study were to investigate gadolinium (Gd) in kidney tissue from a female patient with severe renal failure, who had a magnetic resonance imaging (MRI) with Gd-based contrast agent (GBCA) three times prior to kidney transplantation. Secondly to assess (semi-)quantitatively the Gd concentration in renal tissue and the spatial distribution of Gd in association to suspected co-elements such as calcium (Ca) and zinc (Zn). Archival paraffin embedded kidney tissue was investigated by micro Synchrotron X-ray fluorescence (µSRXRF) at the DORIS III storage ring at beamline L, HASYLAB/DESY(Hamburg, Germany). Elementary gadolinium (Gd) could be demonstrated in a near histological resolution in areas of about 2 × 1.5 mm2 of size. Mean Gd resulted in 200 ppm with a huge width of distribution (Gd-max: 2000 ppm). In kidney cortex Gd was in-homogeneously, but not randomly, distributed. Gd was verified throughout the investigated tissue. Low Gd was predominately concentrated either in areas with focally atrophic tubules or in areas with totally preserved uriniferous tubes. Moreover, strong correlations existed between Gd and calcium (Ca) or Gd and zinc (Zn) or Gd and strontium (Sr) distribution. Throughout our analysed areas copper (Cu) was nearly homogeneously distributed and Cu association to Gd could not be established, and also not for Gd to Fe. Gd in glomeruli was relatively reduced compared with mean Gd-values, while iron (Fe) distribution clearly demarks glomeruli mostly due to red blood cell iron in these capillary convolutes. Quantitative µSRXRF analysis provided an insight in element spatial distribution of Gd in the renal cortex. The strong correlation of the spatial distribution and associations between elements like Ca, Zn and Sr let us suspect that these elements are involved in the cell metabolism of GBCA. Low Gd in areas with extreme fibrosis and tubule atrophy or in areas with histologically intact tubes, let us suspect that on the one side Gd cannot be transported and deposited into these tissue areas and on the other side we assume that intact renal tubes do not reabsorb and store excreted Gd.


Subject(s)
Gadolinium/analysis , Gadolinium/pharmacokinetics , Renal Insufficiency/diagnosis , Female , Fluorescence , Humans , Middle Aged , Spectrometry, X-Ray Emission , Synchrotrons
15.
Kidney Int ; 97(1): 89-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31718844

ABSTRACT

Renal allograft rejection can be prevented by immunological tolerance, which may be associated with de novo formed lymphatic vessels in the donor kidney after transplantation in man. A suitable mouse model of renal allograft rejection in which lymphangiogenesis can be deliberately induced in the graft is critical for elucidating the mechanisms responsible for the association between attenuated transplant rejection and abundance of lymphatic vessels. Here we describe the development of a novel mouse model of rapid renal transplant rejection in which transgenic induction of lymphangiogenesis in the immune-incompatible graft greatly extends its survival time. Thus, our novel approach may facilitate exploitation of lymphangiogenesis in the grafted organ.


Subject(s)
Graft Rejection/prevention & control , Graft Survival/immunology , Kidney Diseases/surgery , Kidney Transplantation/adverse effects , Lymphangiogenesis/immunology , Allografts/immunology , Allografts/pathology , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Graft Rejection/immunology , Graft Rejection/pathology , Humans , Kidney/immunology , Kidney/pathology , Longevity/immunology , Lymphatic Vessels/immunology , Lymphatic Vessels/pathology , Male , Mice , Mice, Transgenic , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism
16.
Am J Transplant ; 20(12): 3486-3501, 2020 12.
Article in English | MEDLINE | ID: mdl-32372431

ABSTRACT

Novel tools are needed to improve diagnostic accuracy and risk prediction in BK virus nephropathy (BKVN). We assessed the utility of intragraft gene expression testing for these purposes. Eight hundred genes were measured in 110 archival samples, including a discovery cohort of native kidney BKVN (n = 5) vs pure T cell-mediated rejection (TCMR; n = 10). Five polyomavirus genes and seven immune-related genes (five associated with BKVN and two associated with TCMR) were significantly differentially expressed between these entities (FDR < 0.05). These three sets of genes were further evaluated in samples representing a spectrum of BK infection (n = 25), followed by a multicenter validation cohort of allograft BKVN (n = 60) vs TCMR (n = 10). Polyomavirus 5-gene set expression reliably distinguished BKVN from TCMR (validation cohort AUC = 0.992), but the immune gene sets demonstrated suboptimal diagnostic performance (AUC ≤ 0.720). Within the validation cohort, no significant differences in index biopsy gene expression were identified between BKVN patients demonstrating resolution (n = 35), persistent infection (n = 14) or de novo rejection (n = 11) 6 months following a standardized reduction in immunosuppression. These results suggest that, while intragraft polyomavirus gene expression may be useful as an ancillary diagnostic for BKVN, assessment for concurrent TCMR and prediction of clinical outcome may not be feasible with current molecular tools.


Subject(s)
BK Virus , Kidney Diseases , Kidney Transplantation , Polyomavirus Infections , Tumor Virus Infections , BK Virus/genetics , Gene Expression , Graft Rejection/etiology , Graft Rejection/genetics , Humans , Kidney , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Kidney Transplantation/adverse effects , Polyomavirus Infections/diagnosis , Risk Assessment , T-Lymphocytes , Tumor Virus Infections/diagnosis
17.
Blood Purif ; 49(5): 576-585, 2020.
Article in English | MEDLINE | ID: mdl-32191942

ABSTRACT

INTRODUCTION: Immunoadsorption (IA) represents a therapeutic option for acute antibody-mediated rejection (ABMR) after kidney transplantation. The addition of membrane filtration (MF) to enhance elimination of macromolecular components that potentially contribute to rejection, such as key complement component C1q and alloreactive IgM, may be an effective strategy to further improve its therapeutic efficiency. RESULTS: Here we present 4 consecutive patients with episodes of HLA donor-specific antibody-positive ABMR nonresponsive to cycles of 6-16 sessions of IA treatment. Rejection episodes were characterized by severe microvascular injury (high-grade microcirculation inflammation and/or signs of thrombotic microangiopathy) and evidence of intense complement activation in peritubular capillaries (diffuse C4d-positivity). IA combined with MF led to substantial morphologic improvement (follow-up biopsies: g + ptc and C4d scores ≤1) and stabilization of allograft function. CONCLUSIONS: Our findings provide evidence for an effect of combination of IA + MF in refractory early acute/active ABMR in kidney transplant recipients.


Subject(s)
Graft Rejection , Hemofiltration , Isoantibodies/blood , Kidney Transplantation , Kidney , Plasmapheresis , Adult , Aged , Female , Graft Rejection/blood , Graft Rejection/therapy , Humans , Male , Middle Aged
18.
J Allergy Clin Immunol ; 143(1): 335-345.e12, 2019 01.
Article in English | MEDLINE | ID: mdl-30009843

ABSTRACT

BACKGROUND: Donor-specific antibodies of the IgG isotype are measured routinely for diagnostic purposes in renal transplant recipients and are associated with antibody-mediated rejection and long-term graft loss. OBJECTIVE: This study aimed to investigate whether MHC-specific antibodies of the IgE isotype are induced during allograft rejection. METHODS: Anti-MHC/HLA IgE levels were measured in sera of mice grafted with skin or heart transplants from various donor strains and in sera of kidney transplant patients with high levels of HLA IgG. Mediator release was triggered in vitro by stimulating basophils that were coated with murine or human IgE-positive serum, respectively, with specific recombinant MHC/HLA antigens. Kidney tissue samples obtained from organ donors were analyzed by using flow cytometry for cells expressing the high-affinity receptor for IgE (FcεRI). RESULTS: Donor MHC class I- and MHC class II-specific IgE was found on acute rejection of skin and heart grafts in several murine strain combinations, as well as during chronic antibody-mediated heart graft rejection. Anti-HLA IgE, including donor HLA class I and II specificities, was identified in a group of sensitized transplant recipients. Murine and human anti-MHC/HLA IgE triggered mediator release in coated basophils on stimulation with specific MHC/HLA antigens. HLA-specific IgE was not linked to atopy, and allergen-specific IgE present in allergic patients did not cross-react with HLA antigens. FcεRI+ cells were found in the human renal cortex and medulla and provide targets for HLA-specific IgE. CONCLUSION: These results demonstrate that MHC/HLA-specific IgE develops during an alloresponse and is functional in mediating effector mechanisms.


Subject(s)
Graft Rejection/immunology , Heart Transplantation , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class I/immunology , Immunoglobulin E/immunology , Kidney Transplantation , Skin Transplantation , Allografts , Animals , Female , Graft Rejection/pathology , Humans , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C
19.
Am J Transplant ; 19(2): 475-487, 2019 02.
Article in English | MEDLINE | ID: mdl-29900661

ABSTRACT

Tolerance induction through simultaneous hematopoietic stem cell and renal transplantation has shown promising results, but it is hampered by the toxicity of preconditioning therapies and graft-versus-host disease (GVHD). Moreover, renal function has never been compared to conventionally transplanted patients, thus, whether donor-specific tolerance results in improved outcomes remains unanswered. We collected follow-up data of published cases of renal transplantations after hematopoietic stem cell transplantation from the same donor and compared patient and transplant kidney survival as well as function with caliper-matched living-donor renal transplantations from the Austrian dialysis and transplant registry. Overall, 22 tolerant and 20 control patients were included (median observation period 10 years [range 11 months to 26 years]). In the tolerant group, no renal allograft loss was reported, whereas 3 were lost in the control group. Median creatinine levels were 85 µmol/l (interquartile range [IQR] 72-99) in the tolerant cohort and 118 µmol/l (IQR 99-143) in the control group. Mixed linear-model showed around 29% lower average creatinine levels throughout follow-up in the tolerant group (P < .01). Our data clearly show stable renal graft function without long-term immunosuppression for many years, suggesting permanent donor-specific tolerance. Thus sequential transplantation might be an alternative approach for future studies targeting tolerance induction in renal allograft recipients.


Subject(s)
Graft Survival , Hematopoietic Stem Cell Transplantation/mortality , Kidney Failure, Chronic/mortality , Kidney Transplantation/mortality , Living Donors/supply & distribution , Adolescent , Adult , Allografts , Case-Control Studies , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Immunosuppressive Agents/therapeutic use , Kidney Failure, Chronic/therapy , Male , Middle Aged , Prognosis , Risk Factors , Survival Rate , Transplantation, Homologous , Young Adult
20.
BMC Nephrol ; 20(1): 346, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477052

ABSTRACT

BACKGROUND: Kidney transplantation is the optimal treatment in end stage renal disease but the allograft survival is still hampered by immune reactions against the allograft. This process is driven by the recognition of allogenic antigens presented to T-cells and their unique T-cell receptor (TCR) via the major histocompatibility complex (MHC), which triggers a complex immune response potentially leading to graft injury. Although the immune system and kidney transplantation have been studied extensively, the subtlety of alloreactive immune responses has impeded sensitive detection at an early stage. Next generation sequencing of the TCR enables us to monitor alloreactive T-cell populations and might thus allow the detection of early rejection events. METHODS/DESIGN: This is a prospective cohort study designed to sequentially evaluate the alloreactive T cell repertoire after kidney transplantation. The TCR repertoire of patients who developed biopsy confirmed acute T cell mediated rejection (TCMR) will be compared to patients without rejection. To track the alloreactive subsets we will perform a mixed lymphocyte reaction between kidney donor and recipient before transplantation and define the alloreactive TCR repertoire by next generation sequencing of the complementary determining region 3 (CDR3) of the T cell receptor beta chain. After initial clonotype assembly from sequencing reads, TCR repertoire diversity and clonal expansion of T cells of kidney transplant recipients in periphery and kidney biopsy will be analyzed for changes after transplantation, during, prior or after a rejection. The goal of this study is to describe changes of overall T cell repertoire diversity, clonality in kidney transplant recipients, define and track alloreactive T cells in the posttransplant course and decipher patterns of expanded alloreactive T cells in acute cellular rejection to find an alternative monitoring to invasive and delayed diagnostic procedures. DISCUSSION: Changes of the T cell repertoire and tracking of alloreactive T cell clones after combined bone marrow and kidney transplant has proven to be of potential use to monitor the donor directed alloresponse. The dynamics of the donor specific T cells in regular kidney transplant recipients in rejection still rests elusive and can give further insights in human alloresponse. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03422224 , registered February 5th 2018.


Subject(s)
Graft Rejection/genetics , High-Throughput Nucleotide Sequencing/methods , Kidney Transplantation/adverse effects , Receptors, Antigen, T-Cell/genetics , Cohort Studies , Graft Rejection/blood , Graft Rejection/diagnosis , Humans , Kidney Transplantation/trends , Prospective Studies , Receptors, Antigen, T-Cell/blood
SELECTION OF CITATIONS
SEARCH DETAIL