Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Microb Pathog ; 161(Pt A): 105159, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34454023

ABSTRACT

Novel live vaccine strains of Mannheimia haemolytica serotypes (St)1 and St6, expressing and secreting inactive yet immunogenic leukotoxin (leukotoxoid) fused to antigenic domains of Mycoplasma bovis Elongation Factor Tu (EFTu) and Heat shock protein (Hsp) 70 were constructed and tested for efficacy in cattle. Control calves were administered an intranasal mixture of M. haemolytica St1 and St6 mutants (ΔlktCAV4) expressing and secreting leukotoxoid while vaccinated calves were administered an intranasal mixture of like M. haemolytica St1 and St6 leukotoxoid mutants coupled to M. bovis antigens (EFTu-Hsp70-ΔlktCAV4). Both M. haemolytica strains were recovered from palatine tonsils up to 34 days post intranasal exposure. On day 35 all calves were exposed to bovine herpes virus-1, four days later lung challenged with virulent M. bovis, then euthanized up to 20 days post-challenge. Results showed all cattle produced systemic antibody responses against M. haemolytica. The vaccinates also produced systemic antibody responses to M. bovis antigen, and concurrent reductions in temperatures, middle ear infections, joint infection and lung lesions versus the control group. Notably, dramatically decreased lung loads of M. bovis were detected in the vaccinated cattle. These observations indicate that the attenuated M. haemolytica vaccine strains expressing Mycoplasma antigens can control M. bovis infection and disease symptoms in a controlled setting.


Subject(s)
Cattle Diseases , Mannheimia haemolytica , Mycoplasma Infections , Mycoplasma bovis , Animals , Antigens, Bacterial , Cattle , Cattle Diseases/prevention & control , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Mycoplasma bovis/genetics , Vaccination
2.
BMC Vet Res ; 17(1): 18, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413373

ABSTRACT

BACKGROUND: Mycoplasma bovis causes mastitis, otitis, pneumonia and arthritis in cattle and is a major contributor to bovine respiratory disease complex. Around the year 2000, it emerged as a significant threat to the health of North American bison. Whether healthy bison are carriers of M. bovis and when they were first exposed is not known. To investigate these questions we used a commercially available ELISA that detects antibodies to M. bovis to test 3295 sera collected from 1984 through 2019 from bison in the United States and Canada. RESULTS: We identified moderately to strongly seropositive bison from as long ago as the late 1980s. Average seroprevalence over the past 36 years is similar in the United States and Canada, but country-specific differences are evident when data are sorted by the era of collection. Seroprevalence in the United States during the pre-disease era (1999 and prior) was significantly higher than in Canada, but was significantly lower than in Canada during the years 2000-2019. Considering individual countries, seroprevalence in the United States since the year 2000 dropped significantly as compared to the years 1985-1999. In Canada the trend is reversed, with seroprevalence increasing significantly since the year 2000. ELISA scores for sera collected from free-ranging bison do not differ significantly from scores for sera from more intensively managed animals, regardless of the era in which they were collected. However, seroprevalence among intensively raised Canadian bison has nearly doubled since the year 2000 and average ELISA scores rose significantly. CONCLUSIONS: Our data provide the first evidence that North American bison were exposed to M. bovis many years prior to the emergence of M. bovis-related disease. Patterns of exposure inferred from these results differ in the United States and Canada, depending on the era under consideration. Our data further suggest that M. bovis may colonize healthy bison at a level sufficient to trigger antibody responses but without causing overt disease. These findings provide novel insights as to the history of M. bovis in bison and will be of value in formulating strategies to minimize the impact of mycoplasmosis on bison health and production.


Subject(s)
Bison , Mycoplasma Infections/veterinary , Mycoplasma bovis/isolation & purification , Animal Husbandry , Animals , Canada/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Mycoplasma Infections/epidemiology , Prevalence , Seroepidemiologic Studies , United States/epidemiology
3.
Emerg Infect Dis ; 26(12): 2807-2814, 2020 12.
Article in English | MEDLINE | ID: mdl-33219651

ABSTRACT

Mycoplasma bovis is 1 of several bacterial pathogens associated with pneumonia in cattle. Its role in pneumonia of free-ranging ungulates has not been established. Over a 3-month period in early 2019, ¼60 free-ranging pronghorn with signs of respiratory disease died in northeast Wyoming, USA. A consistent finding in submitted carcasses was severe fibrinosuppurative pleuropneumonia and detection of M. bovis by PCR and immunohistochemical analysis. Multilocus sequence typing of isolates from 4 animals revealed that all have a deletion in 1 of the target genes, adh-1. A retrospective survey by PCR and immunohistochemical analysis of paraffin-embedded lung from 20 pronghorn that died with and without pneumonia during 2007-2018 yielded negative results. These findings indicate that a distinct strain of M. bovis was associated with fatal pneumonia in this group of pronghorn.


Subject(s)
Antelopes , Cattle Diseases , Mycoplasma Infections , Mycoplasma bovis , Animals , Animals, Wild , Cattle , Female , Male , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Mycoplasma bovis/genetics , Retrospective Studies , Wyoming/epidemiology
4.
J Clin Microbiol ; 58(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32295891

ABSTRACT

Mycoplasma bovis causes pneumonia, pharyngitis, otitis, arthritis, mastitis, and reproductive disorders in cattle and bison. Two multilocus sequence typing (MLST) schemes have been developed for M. bovis, with one serving as the PubMLST reference method, but no comparison of the schemes has been undertaken. Although the PubMLST scheme has proven to be highly discriminatory and informative, the recent discovery of isolates missing one of the typing loci, adh-1, raises concern about its suitability for continued use. The goal of our study was to compare the performance of the two MLST schemes and identify a new reference scheme capable of fully typing all isolates. We evaluated 448 isolates from diverse geographic and anatomic sites that collectively represent cattle, bison, deer, and a goat. The discrimination indexes (DIs) for the PubMLST and the alternative scheme are 0.909 (91 sequence types [STs]) and 0.842 (77 STs), respectively. Although the PubMLST scheme outperformed the alternative scheme, the adh-1 locus must be retired from the PubMLST scheme if it is to be retained as a reference method. The DI obtained using the six remaining PubMLST loci (0.897, 79 STs) fails to reach the benchmark recommended for a reference method (0.900), mandating the addition of a seventh locus. Comparative analysis of genome sequences from the isolates used here identified the dnaA locus from the alternative scheme as the optimal replacement for adh-1 This revised scheme, which will be implemented as the new PubMLST reference method, has a DI of 0.914 and distinguishes 88 STs from the 448 isolates evaluated.


Subject(s)
Cattle Diseases , Deer , Mycoplasma bovis , Animals , Cattle , Cattle Diseases/diagnosis , Female , Genotype , Goats , Multilocus Sequence Typing , Mycoplasma bovis/genetics , Phylogeny
5.
BMC Vet Res ; 14(1): 89, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29534724

ABSTRACT

BACKGROUND: High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5' transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle. RESULTS: The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood. CONCLUSIONS: Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.


Subject(s)
Antibody Formation/immunology , Mycoplasma bovis/immunology , RNA, Small Untranslated/immunology , RNA, Transfer/immunology , Animals , Cattle/immunology , Cattle/microbiology , Enzyme-Linked Immunosorbent Assay/veterinary , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary
6.
BMC Genomics ; 17(1): 767, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27716057

ABSTRACT

BACKGROUND: The genus Bordetella consists of nine species that include important respiratory pathogens such as the 'classical' species B. bronchiseptica, B. pertussis and B. parapertussis and six more distantly related and less extensively studied species. Here we analyze sequence diversity and gene content of 128 genome sequences from all nine species with focus on the evolution of virulence-associated factors. RESULTS: Both genome-wide sequence-based and gene content-based phylogenetic trees divide the genus into three species clades. The phylogenies are congruent between species suggesting genus-wide co-evolution of sequence diversity and gene content, but less correlated within species, mainly because of strain-specific presence of many different prophages. We compared the genomes with focus on virulence-associated genes and identified multiple clade-specific, species-specific and strain-specific events of gene acquisition and gene loss, including genes encoding O-antigens, protein secretion systems and bacterial toxins. Gene loss was more frequent than gene gain throughout the evolution, and loss of hundreds of genes was associated with the origin of several species, including the recently evolved human-restricted B. pertussis and B. holmesii, B. parapertussis and the avian pathogen B. avium. CONCLUSIONS: Acquisition and loss of multiple genes drive the evolution and speciation in the genus Bordetella, including large scale gene loss associated with the origin of several species. Recent loss and functional inactivation of genes, including those encoding pertussis vaccine components and bacterial toxins, in individual strains emphasize ongoing evolution.


Subject(s)
Bordetella/classification , Bordetella/genetics , Evolution, Molecular , Genome, Bacterial , Virulence Factors/genetics , Animals , Bacterial Secretion Systems/genetics , Bordetella Infections/microbiology , Datasets as Topic , Genes, Bacterial , Genetic Variation , Genomics , Genotype , Humans , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide
7.
Int J Syst Evol Microbiol ; 66(12): 5452-5459, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27707434

ABSTRACT

Bordetella hinzii is known to cause respiratory disease in poultry and has been associated with a variety of infections in immunocompromised humans. In addition, there are several reports of B. hinzii infections in laboratory-raised mice. Here we sequenced and analysed the complete genome sequences of multiple B. hinzii-like isolates, obtained from vendor-supplied C57BL/6 mice in animal research facilities on different continents, and we determined their taxonomic relationship to other Bordetella species. The whole-genome based and 16S rRNA gene based phylogenies each identified two separate clades in B. hinzii, one was composed of strains isolated from poultry, humans and a rabbit whereas the other clade was restricted to isolates from mice. Distinctly different estimated DNA-DNA hybridization values, average nucleotide identity scores, gene content, metabolic profiles and host specificity all provide compelling evidence for delineation of the two species, B. hinzii - from poultry, humans and rabbit - and Bordetella pseudohinzii sp. nov. type strain 8-296-03T (=NRRL B-59942T=NCTC 13808T) that infect mice.


Subject(s)
Bordetella/classification , Mice, Inbred C57BL/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Bordetella/genetics , Bordetella/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/analysis , Humans , Mice , Nucleic Acid Hybridization , Poultry , RNA, Ribosomal, 16S/genetics , Rabbits , Sequence Analysis, DNA
8.
BMC Genomics ; 16: 863, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26502932

ABSTRACT

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. METHODS: The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. RESULTS: Here we describe a novel Type II-C CRISPR and its associated genes-cas1, cas2, and cas9-in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. CONCLUSIONS: Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies.


Subject(s)
Bordetella/enzymology , Bordetella/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Endonucleases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Composition/genetics , Endonucleases/metabolism , Reverse Transcriptase Polymerase Chain Reaction
9.
Microbiology (Reading) ; 161(Pt 3): 580-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25627438

ABSTRACT

During a succession of phocine morbillivirus outbreaks spanning the past 25 years, Bordetella bronchiseptica was identified as a frequent secondary invader and cause of death. The goal of this study was to evaluate genetic diversity and the molecular basis for host specificity among seal isolates from these outbreaks. MLST and PvuII ribotyping of 54 isolates from Scottish, English or Danish coasts of the Atlantic or North Sea revealed a single, host-restricted genotype. A single, novel genotype, unique from that of the Atlantic and North Sea isolates, was found in isolates from an outbreak in the Caspian Sea. Phylogenetic analysis based either on MLST sequence, ribotype patterns or genome-wide SNPs consistently placed both seal-specific genotypes within the same major clade but indicates a distinct evolutionary history for each. An additional isolate from the intestinal tract of a seal on the south-west coast of England has a genotype otherwise found in rabbit, guinea pig and pig isolates. To investigate the molecular basis for host specificity, DNA and predicted protein sequences of virulence genes that mediate host interactions were used in comparisons between a North Sea isolate, a Caspian Sea isolate and each of their closest relatives as inferred from genome-wide SNP analysis. Despite their phylogenetic divergence, fewer nucleotide and amino acid substitutions were found in comparisons of the two seal isolates than in comparisons with closely related strains. These data indicate isolates of B. bronchiseptica associated with respiratory disease in seals comprise unique, host-adapted and highly clonal populations.


Subject(s)
Bordetella Infections/veterinary , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/isolation & purification , Respiratory Tract Infections/veterinary , Seals, Earless/microbiology , Animals , Bordetella Infections/microbiology , Bordetella bronchiseptica/classification , Bordetella bronchiseptica/physiology , Genotype , Guinea Pigs , Host Specificity , Multilocus Sequence Typing , Phylogeny , Rabbits , Respiratory Tract Infections/microbiology , Swine , Swine Diseases/microbiology
10.
Infect Immun ; 82(3): 1092-103, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24366249

ABSTRACT

Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse studies, we hypothesized that the B. bronchiseptica type III secretion system (T3SS) would be required for maximal disease severity and persistence in the swine lower respiratory tract. To examine the contribution of the T3SS to the pathogenesis of B. bronchiseptica in swine, we compared the abilities of a virulent swine isolate and an isogenic T3SS mutant to colonize, cause disease, and be transmitted from host to host. We found that the T3SS is required for maximal persistence throughout the lower swine respiratory tract and contributed significantly to the development of nasal lesions and pneumonia. However, the T3SS mutant and the wild-type parent are equally capable of transmission among swine by both direct and indirect routes, demonstrating that transmission can occur even with attenuated disease. Our data further suggest that the T3SS skews the adaptive immune response in swine by hindering the development of serum anti-Bordetella antibody levels and inducing an interleukin-10 (IL-10) cell-mediated response, likely contributing to the persistence of B. bronchiseptica in the respiratory tract. Overall, our results demonstrate that the Bordetella T3SS is required for maximal persistence and disease severity in pigs, but not for transmission.


Subject(s)
Bacterial Secretion Systems/immunology , Bordetella Infections/immunology , Bordetella bronchiseptica/immunology , Virulence Factors, Bordetella/immunology , Animals , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Bordetella Infections/microbiology , Carrier Proteins/immunology , Interleukin-10/immunology , Peptides/immunology , Respiratory System/immunology , Respiratory System/microbiology , Swine , Swine Diseases/immunology , Swine Diseases/microbiology
11.
Avian Dis ; 57(2): 307-10, 2013 Jun.
Article in English | MEDLINE | ID: mdl-24689192

ABSTRACT

Bordetella hinzii infects primarily poultry and immunocompromised humans. It is closely related to the etiologic agent of turkey coryza, Bordetella avium. Distinguishing between B. avium and B. hinzii is difficult, and there is no method for identification of B. hinzii suitable for use by diagnostic laboratories. This report details the development of a B. hinzii-specific PCR targeting the ompA gene. Assay sensitivity is 100% based on analysis of 48 B. hinzii isolates from diverse geographic locations representing all known ribotypes. Evaluation of 71 isolates of B. avium and 20 other bacterial isolates from poultry, comprising gram-negative and gram-positive commensals and pathogens of nine genera, demonstrated an assay specificity of 100%. The ompA PCR is a rapid, reliable, and accurate method for identification of B. hinzii and provides a valuable new tool for veterinary diagnostic laboratories investigating poultry respiratory disease outbreaks.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bordetella Infections/veterinary , Bordetella/genetics , Polymerase Chain Reaction/methods , Poultry Diseases/diagnosis , Turkeys , Animals , Bacterial Outer Membrane Proteins/metabolism , Bordetella/isolation & purification , Bordetella/metabolism , Bordetella Infections/diagnosis , Bordetella Infections/microbiology , Polymerase Chain Reaction/veterinary , Poultry Diseases/microbiology
12.
Infect Immun ; 80(3): 1025-36, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22158743

ABSTRACT

The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg(+)) phase and a nonvirulent (Bvg(-)) phase, a process referred to as phenotypic modulation. We hypothesized that the ability of Bordetella bronchiseptica to undergo phenotypic modulation is required at one or more points during the infectious cycle in swine. To investigate the Bvg phase-dependent contribution to pathogenesis of B. bronchiseptica in swine, we constructed a series of isogenic mutants in a virulent B. bronchiseptica swine isolate and compared each mutant to the wild-type isolate for its ability to colonize and cause disease. We additionally tested whether a BvgAS system capable of modulation is required for direct or indirect transmission. The Bvg(-) phase-locked mutant was never recovered from any respiratory tract site at any time point examined. An intermediate phase-locked mutant (Bvg(i)) was found in numbers lower than the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, colonization of the respiratory tract and disease caused by the Bvg(+) phase-locked mutant and the wild-type strain were indistinguishable. The Bvg(+) phase-locked mutant transmitted to naïve pigs by both direct and indirect contact with efficiency equal to that of the wild-type isolate. These results indicate that while full activation of the BvgAS regulatory system is required for colonization and severe disease, it is not deleterious to direct and indirect transmission. Overall, our results demonstrate that the Bvg(+) phase is sufficient for respiratory infection and host-to-host transmission of B. bronchiseptica in swine.


Subject(s)
Bacterial Proteins/metabolism , Bordetella Infections/veterinary , Bordetella bronchiseptica/pathogenicity , Swine Diseases/microbiology , Swine Diseases/transmission , Transcription Factors/metabolism , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Bordetella Infections/microbiology , Bordetella Infections/pathology , Bordetella Infections/transmission , Gene Expression Regulation, Bacterial , Mutation , Respiratory System/microbiology , Swine , Swine Diseases/pathology , Transcription Factors/genetics , Virulence Factors/genetics
13.
PLoS One ; 17(7): e0271581, 2022.
Article in English | MEDLINE | ID: mdl-35862485

ABSTRACT

The objective was to determine differences in microRNAs (miRNAs) counts in several tissues of calves challenged with Mycoplasma bovis (M. bovis) or with M. bovis and bovine viral diarrhea virus (BVDV). Eight calves approximately 2 months of age were randomly assigned to three groups: Control (CT; n = 2), M. bovis (MB; n = 3), and Coinfection (CO; n = 3). On day 0, calves in CO were intranasally challenged with BVDV and calves in MB with M. bovis. On day 6, CO calves were challenged with M. bovis. Calves were euthanized 17 days post-challenge and serum (SER), white blood cells (WBC), liver (LIV), mesenteric (MLN) and tracheal-bronchial (TBLN) lymph nodes, spleen (SPL), and thymus (THY), were collected at necropsy. MiRNAs were extracted from each tissue from each calf. Significant (P< 0.01) differences in miRNAs expression were observed in SER, LIV, MLN, TBLN, SPL, and THY. There were no significant (P> 0.05) miRNAs in WBC. In SER, the CO group had levels of miR-1343-3p significantly higher than the CT and MB groups (P = 0.0071). In LIV and SPL, the CO group had the lowest counts for all significant miRNAs compared to CT and MB. In TBLN, the CT group had the highest counts of miRNAs, compared to MB and CO, in 14 of the 21 significant miRNAs. In THY, the CO group had the highest counts, in 4 of the 6 significant miRNAs compared to CT and MB. BVDV was associated with reduction of miRNAs in LIV, SPL, MLN, and TBLN, and M. bovis reduced counts of miRNAs in only TBLN. Measuring circulating miRNAs to assess disease condition or to develop intervention strategies to minimize respiratory diseases in cattle caused by BVDV or M. bovis will be of limited use unless an alternative approach is developed to use them as indicators of disease.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Coinfection , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , MicroRNAs , Mycoplasma bovis , Animals , Cattle , Diarrhea , MicroRNAs/genetics , Mycoplasma bovis/genetics
14.
J Wildl Dis ; 57(3): 683-688, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33984143

ABSTRACT

Mycoplasma bovis is a primary cause of respiratory and reproductive diseases in North American bison (Bison bison), with significant morbidity and mortality. The epidemiology of M. bovis in bison is poorly understood, hindering efforts to develop effective control measures. Our study considered whether healthy bison might be carriers of M. bovis, potentially serving as unrecognized sources of exposure. We used culture and PCR to identify mycoplasmas in the nasal cavity or tonsil of 499 healthy bison from 13 herds and two abattoirs in the US and Canada. Mycobacterium bovis was detected in 15 bison (3.0%) representing two herds in the US and one in Canada, while M. bovirhinis, M. bovoculi, M. arginini, or M. dispar was identified from an additional 155 bison (31.1%). Mycoplasma bovirhinis was identified most frequently, in 142 bison (28.5%) representing at least 10 herds. Of the 381 bison for which serum was available, only 6/13 positive for M. bovis (46.2%) tested positively with an M. bovis ELISA, as did 19/368 negative for M. bovis (5.2%). Our data reveal that M. bovis can be carried in the upper respiratory tract of healthy bison with no prior history or clinical signs of mycoplasmosis and that a large proportion of carriers may not produce detectable antibodies. Whether carriage of other mycoplasmas can trigger cross-reactive antibodies that may confound M. bovis serology requires further study.


Subject(s)
Bison , Cattle Diseases , Mycoplasma Infections , Mycoplasma bovis , Animals , Canada , Cattle , Mycoplasma , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Prevalence , Respiratory System
15.
J Clin Microbiol ; 48(9): 3334-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20631116

ABSTRACT

BP3385 has been proposed as a diagnostic PCR target for discriminating between Bordetella pertussis and other Bordetella species that also infect humans. Our results demonstrate that this gene is also present in some strains of Bordetella hinzii and Bordetella bronchiseptica.


Subject(s)
Bacterial Proteins/genetics , Bacteriological Techniques/methods , Bordetella pertussis/isolation & purification , Polymerase Chain Reaction/methods , Whooping Cough/diagnosis , Base Sequence , Bordetella bronchiseptica/genetics , Bordetella pertussis/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Humans , Molecular Sequence Data , Sensitivity and Specificity , Sequence Alignment , Sequence Analysis, DNA
16.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32499343

ABSTRACT

Here, we report the complete genome sequences of 12 Mycoplasma bovis isolates cultured from Canadian bison and 4 cultured from Canadian cattle. The sequences are of value for understanding the phylogenetic relationship between cattle and bison isolates and will aid in elucidating the genetic basis for virulence and host specificity.

17.
J Bacteriol ; 191(19): 5988-6002, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19633080

ABSTRACT

Haemophilus parasuis is a swine pathogen of significant industry concern, but little is known about how the organism causes disease. A related human pathogen, Haemophilus influenzae, has been better studied, and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, are known to have important virulence properties. The goals of this study were to identify, analyze, and compare the genetic relatedness of orthologous genes encoding P2 and P5 proteins in a diverse group of 35 H. parasuis strains. Genes encoding P2 and P5 proteins were detected in all H. parasuis strains evaluated. The predicted amino acid sequences for both P2 and P5 proteins exhibit considerable heterogeneity, particularly in regions corresponding to predicted extracellular loops. Twenty-five variants of P2 and 17 variants of P5 were identified. The P2 proteins of seven strains were predicted to contain a highly conserved additional extracellular loop compared to the remaining strains and to H. influenzae P2. Antigenic-site predictions coincided with predicted extracellular loop regions of both P2 and P5. Neighbor-joining trees constructed using P2 and P5 sequences predicted divergent evolutionary histories distinct from those predicted by a multilocus sequence typing phylogeny based on partial sequencing of seven housekeeping genes. Real-time reverse transcription-PCR indicated that both genes are expressed in all of the strains.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Haemophilus parasuis/genetics , Amino Acid Sequence , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/classification , Blotting, Southern , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Protein Structure, Secondary , Sequence Analysis, DNA
18.
Avian Dis ; 53(1): 50-4, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19432003

ABSTRACT

Bordetella hinzii is commonly acquired from the respiratory tract of diseased poultry but is generally regarded as nonpathogenic in avian hosts because attempts to demonstrate disease following experimental infection of chickens and turkeys have failed. Recently, with the availability of highly specific DNA-based methods for identification of this agent, it was recognized that some isolates used in previous studies were misidentified at the time of their acquisition as Bordetella avium, B. avium-like, or Alcaligenes faecalis type II, including a subset reported to cause disease in turkey poults. In this study six strains of B. hinzii, genetically distinct and representing all known host species, were evaluated for their ability to colonize and cause disease in turkeys following intranasal administration. Although five strains were able to colonize the tracheas of turkey poults, only a subset induced clinical signs of disease, B. hinzii-specific antibodies, or tracheal lesions. The sixth isolate was undetectable in tracheal swabs obtained 1 or 2 weeks postinfection. Birds of this group displayed no clinical signs and minimal tracheal lesions. All remained B. hinzii seronegative. Three of the six strains, differing in their capacity to colonize and/or cause disease in turkeys, were used to infect chicks intranasally. Only one was able to colonize the trachea but did not induce tracheal lesions. No clinical signs of disease were observed in any chick. These results demonstrate that some strains of B. hinzii are virulent in turkey poults and may asymptomatically colonize chicks, and suggest this agent may be of concern to poultry producers.


Subject(s)
Bordetella Infections/veterinary , Bordetella/classification , Bordetella/pathogenicity , Chickens , Poultry Diseases/microbiology , Turkeys , Animals , Antibodies, Bacterial/blood , Bordetella Infections/blood , Bordetella Infections/microbiology , Bordetella Infections/pathology , Trachea/pathology , Virulence
19.
J Vet Diagn Invest ; 31(6): 899-904, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31510908

ABSTRACT

A prior multilocus sequence typing (MLST) study reported that Mycoplasma bovis isolates from North American bison possess sequence types (STs) different from those found among cattle. The 42 bison isolates evaluated were obtained in 2007 or later, whereas only 19 of 94 (~20%) of the available cattle isolates, with only 1 from North America, were from that same time. We compared STs of additional, contemporary, North American cattle isolates with those from bison, as well as isolates from 2 North American deer, all originating during the same timeframe, to more definitively assess potential strain-related host specificity and expand our understanding of the genetic diversity of M. bovis. From 307 isolates obtained between 2007 and 2017 (209 from cattle, 96 from bison, 2 from deer), we identified 49 STs, with 39 found exclusively in cattle and 5 exclusively in bison. Four STs were shared between bison and cattle isolates; one ST was found in cattle and in a deer. There was no clear association between ST and the health status of the animal of origin. An MLST-based phylogeny including 41 novel STs identified in our study reveals that STs found in bison fall within several divergent lineages that include STs found exclusively in cattle.


Subject(s)
Bison , Cattle Diseases/diagnosis , Deer , Mycoplasma Infections/veterinary , Mycoplasma bovis/classification , Animals , Canada , Cattle , Cattle Diseases/classification , Cattle Diseases/microbiology , Multilocus Sequence Typing/veterinary , Mycoplasma Infections/classification , Mycoplasma Infections/diagnosis , Mycoplasma Infections/microbiology , Mycoplasma bovis/genetics , United States
20.
Clin Infect Dis ; 46(6): 905-8, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18260750

ABSTRACT

An infant who experienced recurrent episodes of respiratory failure received a diagnosis of pertussis on the basis of immunofluorescence testing, but culture revealed macrolide-resistant Bordetella bronchiseptica. Genetic analysis demonstrated that the child was not infected with a kennel cough vaccine strain, although the family's dog had recently been vaccinated. The infection cleared with imipenem therapy.


Subject(s)
Bordetella bronchiseptica/classification , Bordetella bronchiseptica/genetics , Cough/veterinary , Dog Diseases/prevention & control , Pneumonia, Bacterial/microbiology , Animals , Bacterial Typing Techniques , Bacterial Vaccines/classification , Bacterial Vaccines/genetics , Bacteriological Techniques , Bordetella Infections/microbiology , Bordetella bronchiseptica/isolation & purification , Cough/microbiology , Cough/prevention & control , Culture Media , Dog Diseases/microbiology , Dogs , Humans , Immunocompetence , Infant
SELECTION OF CITATIONS
SEARCH DETAIL